115418 (598441), страница 2
Текст из файла (страница 2)
O
A D
Мал. 9
Додаткове завдання.
1) Довести, що для справедливості рівності AB = CD необхідної і достатньо, щоб середина відрізка AD збігалася із серединою відрізка BC.
2) Позначте на мал.9 вектори AB,CB,OA, OC, BD, AD, DC, OB . Записати співнапрямлені і протилежно напрямлені вектори.
У
РОК – 2. Тема уроку. РІВНІСТЬ ВЕКТОРІВ. РОЗВ’ЯЗУВАННЯ ВПРАВ
Мета уроку. Ознайомлення учнів із поняттям рівні вектори і закріпити на прикладах.
Тип уроку. Урок засвоєння нових знань; застосування знань і формування вмінь.
Знання, вміння, навички. Знати формулювання рівності векторів, уміти відкладати від довільної точки вектор, який дорівнює даному.
Наочні посібники і ТЗН. 1) Кодоскоп; 2) кодопозитиви із зразками алгоритму розв’язку вправ.
ХІД УРОКУ
І. Фронтальне опитування.
В – 1 [ В – 2]
1) Вектором називається ... 1) Абсолютною величиною вектора називається
а) напрямлений відрізок; а) довжина відрізка;
б) відрізок певної довжини; б) довжина вектора;
в) стрілка з напрямом; в) довжина променя;
г) промінь. г) довжина відрізка, що зображає вектор. (1 бал)
2) Які вектори спів напрямлені: 2) Які вектори протилежно напрямлені:
M A N
K B L
Мал. 10
а)BK і BL; б) NA і AN; а) LB і BK; б) NA NM. в) MN і AN; г) KM і NL; в) MK і LN; г) NM і LK. (2бали)
3 ) Вектор AB=3. Яка довжина вектора 3) Вектор NK=5. Яка довжина
M
N, коли вектор AB= MN? вектора DC, коли NK= DC?
а
) MN=6; б) MN=3; в) MN=0;г) MN=5. а) AB=5;б)AB=3;в)AB=10; г)AB=0. (3 бали)
4) Нехай ABCD– квадрат O–точка перетину діагоналей, |AC|= 6 см. нього Δ ABC із стороною 8 см
4) DE–середня лінія
Ч ому дорівнює |OA|?
B C
O
A D
а
) |OA|= 6
см ; редина BC). Знайти |AD|.
B
D E
AC
б
) |OA|=3
см; а)|AD|=3см;
в ) |OA|=6см; б)|AD|=6см;
г) |OA|=3см. в)|AD|=4см;
г )|AD|=8см. (3бали)
5) Паралельне перенесення задається формулами x'=x+2[x'=x+3], y'=y–1
[ y'=y–2]. У які точки при цьому паралельному перенесенні переходить
п очаток і кінець вектора AB [MN], що мають відповідні координати (1;2) і (2;3) [ (2;4) і (1;3) ].
а) (2;3) і (4;2); б) (1;3) і (2;4); а) (5;1) і (4;0); б) (5;2) і (4;1);
в) (-3;1) і (4;-2); г) (2;1) і (-4;2). в) (-5;-2) і (-4;-1); г) (4;1) і (2;5). (3 бали)
Після цього демонструю на екран правильні відповіді. Учні виставляють оцінки за бальною системою, яка демонструється на екран (або таблицю). Звертається увага на 4-те завдання, до якого ми ще повернемося в наступних уроках.
ІІ. Вивчення нового матеріалу.
П
ропоную учням порівняти вектори (4-те завдання із тестів фронтального опитування) BC і AD, AO і OC. Назвати пару векторів, які однаково напрямлені і рівні за абсолютною величиною. Учні знаходять правильну відповідь, пропонують свої версії означення рівності векторів. Після цього ввожу означення рівних векторі:
Два вектори називаються рівними, якщо вони суміщаються паралельним перенесенням.
1
D
C B
A
2
Показую на екрані мал. 213 (за підручником) і за допомогою двох кодоплівок (плівка-1, плівка-2) демонструю динаміку паралельного перенесення. З екрана учні бачать, що існує паралельне перенесення, яке переводить початок (С) і кінець (D) одного вектора відповідно у початок (А) і кінець (В) другого вектора.
Підсумовую необхідну і достатню умову рівності векторів: ”рівні вектори однаково напрямлені й рівні між за абсолютною величиною”.
П
овертаючись до екрану звертаю увагу учням, що вектори AB і CD –одинаково напрямлені і рівні за абсолютною величиною. Паралельне перенесення, яке переводить точку C у точку A, суміщає (учні дивляться на екран) роблять висновок: AB = CD (відрізки) і тому точка D збігається з точкою B, т
обто паралельне перенесення переводить вектор CD у вектор AB. Отже, вектори AB і CD рівні, що й треба було довести.
ІІІ. Закріплення матеріалу (демонструю на кодоскопі).
-
В
ектори AB і DC однаково напрямлені й мають рівну абсолютну величину. Чи рівні ці вектори?
-
Д
ва вектори AB = BC. Порівняйте їхні абсолютні величини і напрям.
-
Д
ано паралелограм ABCD. Які векторні рівності можна скласти, використовуючи малюнок 11?
5
. OA, OB, OC – радіуси одного кола. Що можна сказати про вектори OA, OB, OC?
6. Розглянути розв’язок (за підручником мал. 214) задачі.
П
ісля ознайомлення учнів із розв’язком задачі 2 і з можливістю й однозначністю відкладання від будь-якої точки площини вектора, що дорівнює даному(за підручником с. 142), пропоную розв’язати таку задачу: Дано вектор АВ і точку D. Побудувати точку С так, щоб вектор DC= АВ
Скільки розв’язків має задача?
В
а
А С
а΄
О
План побудови записую на кодоплівці. Учні коментують і записують цей план у зошиті, а також виконують побудову:
1) будуємо пів пряму з початком у точці D, паралельно пів прямій АВ (за допомогою косинця й лінійки);
2 ) на цій пів прямій будуємо точку С, яку одержимо суміщенням з точкою В (існує паралельне перенесення, при якому початок вектора АВ переходить у точку D, а кінець точки В точку С).
Таким чином від точки D площини відкладаємо один і тільки один вектор a΄, що дорівнює a.
IV. Підсумок уроку.
Звертаю увагу учнів на необхідну й достатню умову рівності векторів, а також на те, що рівність векторів істотно відрізняється від рівності відрізків (учні самі роблять висновок).
V. Завдання додому. §10 (п. 92); №3; зап.5 – 7.
Додаткова вправа.
1
) ABCD – квадрат, О – точка перетину його діагоналей. Чи рівні вектори?
AB і CD, AD і OC, AO і OB, BO і OD?
УРОК – 3. Тема уроку. КООРДИНАТИ ВЕКТОРА
Мета уроку. Сформулювати поняття координати вектора, ознайомити із знаходженням координати вектора через координати пари чисел (координата кінців вектора).
Тип уроку. Урок засвоєння нових знань.
Наочні посібники і ТЗН. 1) кодоскоп; 2) кодопозитиви.
Знання, вміння, навички. Знати, що таке координати вектора; формулювання прямої і оберненої теореми про рівність векторів; вміти знаходити координати вектора за його початку і кінця; обчислювати абсолютну величину за його координатами; набути навичок при виконанні вправ на обчислення рівності векторів і їх, координат.
ХІД УРОКУ
І. Повторення вивченого матеріалу.
Перевірку домашнього завдання проводжу за допомогою кодоскопу. На екран демонструю алгоритм розв’язку вправи № 3 (§10) і додаткову вправу (квадрат).
До даних вправ задаю запитання 5 – 7 (за підручником). Один учень розповідає доведення запитання 6, а інший за допомогою кодоскопу розповідає доведення запитання 7.
Після цього активним учням виголошую оцінки (бали).
ІІ. Вивчення нового матеріалу.
-
Демонструю на екран мал. 12 (з коментуванням).
y
y 1 B(x2;y2)
y1 A(x1;y1)
O x1 x2 x
Мал. 12
Задаю запитання:
-
Назвати координати точок А і В.
-
Показати на екрані АВ вісі абсцис і ординат.
-
Записати довжини проекцій на осі Ox і Oy.
Пояснюю, що числа a1 = x2 – x1 і a2 = y2 – y1 є довжини проекцій вектора на осі координат і тим самим ми знайшли координати вектора.
Корисно сформулювати правило знаходження вектора:
” Щоб знайти координати вектора, потрібно з координат його кінця в
ідняти відповідні координати його початку ”.
Підсумовую: координати векторів (OA,OC) із початком в точці O(0;0) співпадають з координатами, їх кінців.
Пропоную учням обчислити координати кінця (початку) вектора за його координатами й координатами його початку (кінця):
-
З
найти координати кінця вектора (2;5), початок якого в точці: а) (2;3); б) (-1;5), в) (0;0).
-
З
найти координати початку вектора (5;-3), кінець якого в точці:
а) (-3;1), б) (0;0), в) (5;-3).
Для усних обчислень використовую таблицю (на кодопозитиві).
A | A2 | A1A2 = a | |||
x1 | y1 | x2 | y2 | a1 | a2 |
2. | 3 | 4 | 8 | 2 | 5 |
2. Формулу для обчислення абсолютної величини вектора за його координатами виводжу під час розв’язування вправ (учні по черзі на дошці записують розв’язок):
1) Дано точки А(3;1) і В(5;3). Знайдіть абсолютну величину вектора АВ.
2 ) Вектор а має початком точку А(x1;y1) ,а кінцем точку B(x2;y2).Знайдіть
абсолютну величину вектора а.
Розв’язування.
| a | = | AB | = =
.
Пропоную учням обчислити модулі векторів, заданих: а) координатами;
б) початку й кінця (самостійно на кодопозитиві).
3. Для доведення теореми про рівні вектори користуюся мал.13 і розпо відаю сам процес доведення.
y
A2(x2; y2)