86058 (597864), страница 2

Файл №597864 86058 (Интегралы. Дифференциальные уравнения) 2 страница86058 (597864) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

где , , и – некоторые числа.

Теорема. Общее решение линейного неоднородного дифференциального уравнения (2) равно сумме общего решения соответствующего однородного уравнения (3) и частного решения исходного неоднородного уравнения (2).

Числовым рядом называется выражение вида

(1)

Числа называются членами ряда, а член - общим членом ряда.

Сумма первых членов ряда называется – й частичной суммой ряда.

Ряд называется сходящимся, если существует конечный предел последовательности его частичных сумм, то есть

Число называется суммой ряда.

Свойства сходящихся рядов.

  1. Если ряд (1) сходится и имеет сумму , то и ряд полученный умножением данного ряда на число также сходится и имеет сумму .

  2. Если ряды

и

(2)

сходятся и их суммы соответственно равны и , то и ряд представляющий сумму данных рядов также сходится, и его сумма равна .

  1. Если ряд сходится, то сходится и ряд, полученный из данного путем отбрасывания или приписывания конечного числа членов.

Теорема (необходимый признак сходимости) Если ряд сходится, то предел его общего члена стремится к нулю, то есть

.

Теорема (признак сравнения). Пусть (1) и (2) – ряды с положительными членами, причем члены первого ряда не превосходят членов второго, то есть при любом

.

Тогда а) если сходится ряд (2), то сходится и ряд (1)

б) если расходится ряд (1), то расходится и ряд (2).

Теорема (предельный признак сравнения). Пусть (1) и (2) – ряды с положительными членами и существует конечный предел отношения их общих членов , то ряды одновременно сходятся, либо расходятся.

Теорема (признак Даламбера). Пусть дан ряд (1) с положительными членами и существует предел

.

Тогда, если , то ряд сходится; если , то ряд расходится; если , то вопрос о сходимости ряда остается нерешенным.

Ряды с членами произвольного знака

Знакочередующиеся ряды. Под знакочередующимся рядом понимается ряд в котором члены попеременно то положительны то отрицательны

Теорема. (Признак Лейбница). Если члены знакочередующегося ряда убывают по абсолютной величине и предел его общего члена при равен нулю, ряд сходится, а его сумма не превосходит первого члена.

Если ряд, составленный из абсолютных величин членов данного ряда (1) сходится, то сходится и данный ряд.

Ряд называется условно сходящимся, если сам ряд сходится, а ряд, составленный из абсолютных величин его членов, расходится.

Ряд называется абсолютно сходящимся, если сходится как сам ряд, так и ряд, составленный из абсолютных величин его членов.

Степенным рядом называется ряд вида

(3)

Совокупность тех значений , при которых степенной ряд (3) сходится, называется областью сходимости степенного ряда.

Теорема Абеля. 1). Если степенной ряд сходится при значении (отличном от нуля), то он сходится и, притом абсолютно, при всех значениях таких, что . 2). Если степенной ряд расходится при , то он расходится при всех значениях таких, что .

  1. ,

  2. .

Тогда областью сходимости степенного ряда будет интервал .

На любом отрезке , целиком принадлежащем интервалу сходимости , функция является непрерывной, а следовательно, степенной ряд можно почленно интегрировать на этом отрезке.

Кроме того, в интервале сходимости степенной ряд можно почленно дифференцировать. При этом после интегрирования или дифференцирования полученные ряды имеют тот же радиус сходимости .

Имеют место следующие разложения элементарных функций.

Случайные события

Основные вопросы лекции: случайные события; случайные величины, описательный подход к понятию случайной величины, дискретные случайные величины, случайные величины общего вида, функция распределения, распределение случайных величиныи числовые характеристики.

Числовые характеристики случайных величин

Рассмотрим основные характеристики дискретной случайной величины при конечном числе значений.

Каждому значению дискретной случайной величины отвечает его вероятность. Как отмечалось выше, последовательность таких пар образует ряд распределения дискретной случайной величины:

где , , i= 1,…, n, .

Если случайная дискретная величина является случайной альтернативной величиной, т.е. задается двумя значениями 0 и 1 и соответствующими им вероятностями исходов q = 1 – ри р, то ряд распределения принимает форму:

,



где 0 ≤ p ≤ 1, p + q = 1.

На основе ряда распределения можно определить среднее значение случайной дискретной величины как меру, которая объединяет значения случайной дискретной величины и их вероятности. Среднее значение есть взвешенная средняя всех возможных значений случайной величины, роль весов (частот) играют вероятности.

Ожидаемое среднее значение случайной величины называется математическим ожиданием М(Х) (оценкой, которую ожидают получить).

Математическое ожидание случайной дискретной величины X (т.е. принимающей только конечное или счетное множество значений x1, x2,…, хп соответственно с вероятностями р1, p2,…, рп) равно сумме произведений значений случайной величины на соответствующие им вероятности:



. (1)

Свойства математического ожидания случайной дискретной величины

Математическое ожидание случайной дискретной величины обладает следующими свойствами:



1. M(C) = С,

где С – постоянная величина.



2. М (С·Х) = С·М(Х),

где С – постоянная величина.

3. М (Х1 ± Х2 ±…± Хn) = М(Х1) ± М(Х2) ±…± М(Хn). (2)

4. Для конечного числа пнезависимых случайных величин:



М (Х1∙ Х2∙…∙Хn)= М(Х1) ∙М(Х2) ∙…∙М(Хn). (3)

5. М (Х–C) = М(Х) – C.

Следствие. Математическое ожидание отклонения значений случайной величины X от ее математического ожидания равно нулю:



М [Х – М(Х)] = 0. (4)

6. Математическое ожидание среднего арифметического значения п одинаково распределенных взаимно независимых случайных величин равно математическому ожиданию каждой из величин:



. (5)

Случайные дискретные величины называются одинаково распределенными, если у них одинаковые ряды распределения, а следовательно, и одинаковые числовые характеристики.

Пусть Х1, Х2,…, Хn – одинаково распределенные случайные величины, математические ожидания каждой из которых одинаковы и равны а. Тогда математическое ожидание их суммы равно nаи математическое ожидание средней арифметической равно а:



.

Ожидаемое среднее значение функции случайной величины ожидаемое среднее значение можно вычислять как функцию случайной величины. Пусть h(X) – функция случайной величины X. Ожидаемое значение функции дискретной случайной величины:



(6)

Функция h(X) может быть любой, например X 2,3Х 4, logX. Разберем простой пример, когда h(X) – линейная функция от X, т.е. h(X)= аХ+ b, где а, b – числовые параметры.

Ожидаемый ежемесячный доход от продаж продукции составляет 5400 условных денежных единиц. Для линейной функции случайной величины вычисления M[(h(x)] можно упростить, так как из свойств математического ожидания следует, что



M (аХ+ b) = аM(Х) + b,

где a, b – числовые параметры.

Формула (5) подходит для любых случайных величин как дискретных, так и непрерывных.

Дисперсия дискретной случайной величины

Дисперсия случайной величины есть математическое ожидание квадрата отклонения значений случайной величины от ее математического ожидания.



σ2 = D(X) = M{[X – M(X)] 2} = [xi – M(X)] 2P(xi). (7)

Вероятности значений случайной величины играют роль весов (частот) при вычислении ожидаемых значений квадратов отклонений дискретной случайной величины от средней. По формуле (7) дисперсия вычисляется путем вычитания математического ожидания из каждого значения случайной величины, затем возведения в квадрат результатов, умножения их на вероятности Р(хi) и сложения результатов для всех хi.

Для примера 3.1 (о рекламных объявлениях, размещаемых в газете в определенный день) дисперсия вычисляется так:

σ2 = [xi–M(X)] 2P(xi) = (0–2,3) 2 + (1–2,3) 2 + (2–2,3) 2 + (3–2,3) 2+ (4–2,3) 2 + (5 – 2,3) 2 = 2,01.

Свойства дисперсии дискретной случайной величины

Дисперсия дискретной случайной величины обладает следующими свойствами.



1. D(C) = 0,

где C – постоянная величина.



2. D (C∙X)= C∙D(X),

где C – постоянный множитель.

3. Для конечного числа nнезависимых случайных величин:



D (X1 ± Х2±…±Xn) = D(X1) + D(X2)+ … +D(Xn). (8)

4. Если Х1, Х2,…, Хn – одинаково распределенные независимые случайные величины, дисперсия каждой из которых равна σ2 (Хi), то дисперсия их суммы равна пσ2, а дисперсия средней арифметической равна σ2/п:



σ2/п. (9)

Для вычисления дисперсии проще пользоваться другой формулой, полученной путем несложных математических выкладок:

D(X) = M [X – M(X)] 2 =M [X2 – 2M(X) X+ M(X) 2] =

M(X) 2 –2M(X) M(X) + [M(X)] 2 = M(X2) – [M(X)] 2 = M (X 2) – М 2 (Х).

Характеристики

Тип файла
Документ
Размер
4,15 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6392
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее