86040 (597859)
Текст из файла
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО РЫБОЛОВСТВУ
Федеральное государственное образовательное учреждение высшего профессионального образования
МУРМАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
Мончегорский филиал
ВЫСШАЯ МАТЕМАТИКА.
Методические указания и контрольные задания для студентов-заочников специальности 061100 «Менеджмент организации»
Мончегорск 2005г.
Общие организационно-методические указания
Основные задачи при изучении курса «Высшая математика»:
-
освоение наиболее употребительных понятий и определений математики;
-
изучение основ линейной алгебры, математического анализа, дифференциальных уравнений;
-
приобретение практических навыков в решении задач.
Учебными планами для студентов-заочников предусмотрены лекции, практические занятия с преподавателями, самостоятельная работа и выполнение контрольных работ. При изучении теоретического материала рекомендуется составлять краткие конспекты тем и ответить на вопросы для самопроверки, приведенные в конце каждой темы.
Программа курса рассчитана на два семестра. В каждом семестре необходимо выполнить две контрольные работы. В конце каждого семестра проводится экзамен.
Тематический план осеннего семестра
-
Множества. Числа.
-
Линейная алгебра.
-
Аналитическая геометрия.
-
Функции.
-
Комплексные числа. Многочлены.
-
Предел и непрерывность функции.
-
Дифференциальное исчисление.
Тематический план весеннего семестра.
-
Неопределенный интеграл.
-
Определенный интеграл.
-
Ряды.
-
Функции многих переменных.
-
Дифференциальные уравнения.
Рекомендуемая литература
-
Кремер Н.Ш,.и др. Высшая математика для экономистов/Кремер Н.Ш., Путко Б.А., Тришин И.М., Фридман М.Н.- М.: Банки и биржи, 1997. – 439с.
-
Маркович Э.С. Курс высшей математики с элементами теории вероятностей и математической статистики: Учеб. пособие для вузов. – 2-е изд., перераб. и доп., – Высш. шк., 1972. – 480 с.
-
Шипачев В.С. Основы высшей математики. М.: Высшая школа, 1989.
-
4.Красс М.С. Математика для экономических специальностей: Учебник. – М.: ИНФРА-М, 1998. – 464с. – (Серия “Высшее образование”).
-
Дополнительная
-
Ивашев-Мусатов О.С. Начала математического анализа: Учеб. пособие для вузов. – 4-е изд., испр. – М. : Наука, 1981. – 159с.
-
Пискунов Н.С. Дифференциальное и интегральное исчисления: В 2 т.: Учеб. пособие для втузов. – М. : Наука, 1978. Т.1– 453с., Т.2 – 575с..
-
Мордкович А.Г., Смышляев В.К..Алгебра и начало анализа. М.: Просвещение, 1987
-
Фихтенгольц Г.М. Основы математического анализа М. Наука 1968
-
Виленкин И.В. Гробер В.М. Высшая математика Ростов–на-Дону “Феникс” 2002
-
Ермаков В.И. Общий курс высшей математики для экономистов М. ИНФРА – М 2003
-
Письменный Д.Т. Конспект лекций по высшей математике М. АЙРИС ПРЕСС 2004
-
Данко П.Е. Попов А.Г. Высшая математика в упражнениях и задачах М. Высшая школа 1999.
ТЕМА 1. МНОЖЕСТВА, ЧИСЛА
Понятие множества. Подмножество, объединение, пересечение, дополнение. Числовые множества: натуральные, целые, рациональные, действительные числа. Модуль числа. Интервал, окрестность, отрезок. Числовая ось.
КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ.
М ножеством называется совокупность каких-либо объектов, обладающих общим для них характеристическим свойством. Эти объекты называются элементами множества. Если элемент а принадлежит множеству А, то пишут аА, если не принадлежит , аА. множество может состоять как из конечного, так и бесконечного числа элементов. множество, не содержащее ни одного элементы, называется пустым и обозначается О. Если каждый элемент множества А является одновременно элементом множества В, то множество а называется подмножеством множества В. Множество С, состоящее из элементов, каждый из которых принадлежит одновременно множеству А и множеству В, называется пересечением множеств А и В, обозначается С=А∩В. Множество С, состоящее из элементов, каждый из которых принадлежит хотя бы одному из множеств А и В, называется объединением А и В ( обозначается А U В).
если множество А является подмножеством В, то дополнением подмножества А до множества В называется множество D, состоящее из элементов, принадлежащих В, но не принадлежащих А ( обозначается D= В\А). N - множество натуральных чисел. Z -множество целых чисел. N подмножество Z: N Z . Q: m/n -множество рациональных чисел. I -множество иррациональных чисел. Q U I = R, R- множество действительных чисел. Геометрическое изображение R - это множество точек числовой прямой. [а,в] - отрезок : ав.
( а,в)- интервал : а в.
а R , в R .
Вопросы для самопроверки.
-
Приведите примеры множеств, состоящих из конечного и из бесконечного числа элементов.
-
Сколько подмножеств можно образовать из множества Х={ х1, х2, х3}?
-
Изобразите на бумагу два множества в виде двух частично перекрывающихся геометрических фигур (каждое множество состоит из точек, расположенных внутри соответствующей фигуры). Заштрихуйте объединение и пресечение множеств.
-
Приведите пример числового множества, состоящего из конечного числа элементов.
-
Какое из чисел больше6 –5 или 3? У какого из этих чисел больше модуль?
-
Приведите примеры интервала и отрезка. Чем отличается отрезоу от интервала?
-
Изобразите на числовой оси числа 2, ½, -1.
-
При каких х справедливо равенство |x³|= - x³?
ТЕМА 2. ЛИНЕЙНАЯ АЛГЕБРА
Векторы в n-мерной системе координат. Матрицы. Определитель. Ранг матрицы. Сложение матриц. Умножение матрицы на вектор. Умножение матрицы на матрицу, коммутативность. Диагональная и единичная матрицы, транспонированная матрица. Треугольная матрица. Обратная матрица. Системы линейных алгебраических уравнений. Условия существования и единственности решения. Формула Крамера. Метод Гаусса.
КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ.
В некоторых приложениях употребляется n-мерная прямоугольная система координат, в которой формально введены не2 или 3, а n взаимно перпендикулярных координатных осей. Вектор в такой системе – это набор из n упорядоченных чисел – координат вектора.
Базис и координаты вектора.
. Линейной комбинацией векторов а1, а2,…,аn называется выражение вида: k1a1 + k2a2 +…+ knan, где ki – числа.
Векторы а1, а2,…,аn называются линейно зависимыми, если найдутся такие числа k1, k2,…, kn, не все равные нулю, что соответствующая линейная комбинация векторов равна нулю, т.е. k1a1 + k2a2 +…+ knan = 0. Если же равенство возможно только при всех ki = 0, векторы называются линейно независимыми.
Замечание 1. Если система векторов содержит нулевой вектор, то она линейно зависима.
Замечание 2. Если среди n векторов какие-либо (n-1) линейно зависимы, то и все n векторов линейно зависимы.
Замечание 3. Необходимым и достаточным условием линейной зависимости двух векторов является их коллинеарность.
Рассмотрим декартову систему координат, базис которой образуют в пространстве три попарно ортогональных единичных вектора i, j, k. Тогда любой вектор d может быть представлен в виде их линейной комбинации:
d = Xi + Yj +Zk.
Числа X, Y, Z называются декартовыми координатами вектора d.
Замечание. Декартовы координаты вектора равны его проекциям на оси Ох, Оу и Оz декартовой системы координат.
Матрицей А=||aij || размера nm называется прямоугольная таблица чисел.
Обозначения: А – матрица, - элемент матрицы,
номер строки, в которой стоит данный элемент,
номер соответствующего столбца; m – число строк матрицы, n – число ее столбцов.
Числа m и n называются размерностями матрицы.
Матрица называется квадратной, если m = n. Число n в этом случае называют порядком квадратной матрицы. Каждой квадратной матрице можно поставить в соответствие число, определяемое единственным образом с использованием всех элементов матрицы. Это число называется определителем.
Определителем второго порядка называется число, полученное с помощью элементов квадратной матрицы 2-го порядка следующим образом:
.
При этом из произведения элементов, стоящих на так называемой главной диагонали матрицы (идущей из левого верхнего в правый нижний угол) вычитается произведение элементов, находящихся на второй, или побочной, диагонали.
Примеры.
1. 2.
Определителем третьего порядка называется число, определяемое с помощью элементов квадратной матрицы 3-го порядка следующим образом:
Замечание. Для того, чтобы легче запомнить эту формулу, можно использовать так называемое правило треугольников. Оно заключается в следующем: элементы, произведения которых входят в определитель со знаком «+», располагаются так:
образуя два треугольника, симметричных относительно главной диагонали. Элементы, произведения которых входят в определитель со знаком «-», располагаются аналогичным образом относительно побочной диагонали:
Матрицы одинаковой размерности называются равными, если у них соответственно равны элементы, стоящие на одинаковых местах.
Матрица называется нулевой, если все ее элементы равны 0.
Квадратная матрица называется единичной, если элементы, стоящие на ее главной диагонали, равны 1, а остальные равны 0.
Линейные операции над матрицами.
-
Сложение матриц.
Суммой матриц А и В одинаковой размерности m n называется матрица С той же размерности, каждый элемент которой равен сумме элементов матриц А и В, стоящих на тех же местах:
Свойства сложения:
-
А + В = В + А.
-
(А + В) + С = А + (В + С) .
-
Если О – нулевая матрица, то А + О = О + А = А
Замечание 1. Справедливость этих свойств следует из определения операции сложения матриц.
Замечание 2. Отметим еще раз, что складывать можно только матрицы одинаковой размерности.
Пример.
-
Умножение матрицы на число.
Произведением матрицы на число называется матрица той же размерности, что и исходная, все элементы которой равны элементам исходной матрицы, умноженным на данное число.
Свойства умножения матрицы на число:
-
(km)A=k(mA).
-
k(A + B) = kA + kB.
-
(k + m)A = kA + mA.
Замечание 1. Справедливость свойств следует из определений 3.4 и 3.5.
Замечание 2. Назовем разностью матриц А и В матрицу С, для которой С + В =А, т.е. С = А + (-1)В.
Пример.
. Тогда
Перемножение матриц.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.