85761 (597823), страница 3

Файл №597823 85761 (Математическое моделирование и расчет систем управления техническими объектами) 3 страница85761 (597823) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)


Наиболее прост формальный переход путем замены оператора дифференцирования на комплексный аргумент s от дифференциального уравнения (2) к передаточной функции (3) и обратно. Осуществляя переход к передаточным функциям, следует избегать сокращения общих делителей полиномов числителей и знаменателей, т.е. диполей рациональных функций. Такое сокращение при водит к потере части собственных составляющих движения при ненулевых предначальных условиях (составляющих свободных движений).

По временным и/или частотным характеристикам, полученным экспериментально, оценивают параметры передаточных функций или ординаты характеристик иного типа. Такие переходы оказываются неоднозначными, а их результаты зависят от выбора структуры оператора и алгоритма обработки данных.

2.2 Построение временных характеристик

Временные характеристики – импульсная переходная функция w(t) и переходная характеристика h(t) могут быть получены экспериментально, если удается подать на вход объекта воздействие в виде достаточно узкого импульса с необходимой амплитудой или ступенчатой функцией времени. Последнее более реально – функцию веса w(t) впоследствии можно получать дифференцированием функции h(t).

Статистические методы непараметрической идентификации позволяют оценить ординаты функции веса w(t) путем обработки данных вход-выход объекта в виде случайных сигналов, возможных в режиме нормальной эксплуатации (корреляционный анализ).

Существуют методы построения временных характеристик по частотным, базирующиеся на обратном преобразовании Фурье. В случае, когда исходная информация об объекте представлена в форме дифференциального уравнения (1), временные характеристики получают его решением.

В классической теории автоматического управления для решения дифференциальных уравнений часто привлекают так называемый операторный метод, связанный с преобразованием Лапласа. Метод особенно удобен в случае типовых воздействий в виде обобщенных функций и позволяет легко учесть ненулевые начальные условия.

Пусть дано дифференциальное уравнение n-порядка звена или системы автоматического управления (2). Необходимо получить выражения для импульсной переходной функции (функции веса) w(t), переходной характеристики h(t), а также для реакции в случае воздействия общего вида. Пусть изображение по Лапласу воздействия на входе системы или звена представляет собой дробно-рациональную функцию от s:

.

Если преобразовать по Лапласу дифференциальное уравнение n-го порядка при ненулевых предначальных условиях, то после разрешения полученного алгебраического уравнения относительно изображения переменной выхода имеем

. (7)

Здесь полином AH(s) определяется предначальными условиями. Если все предначальные условия нулевые, то изображение выхода

где W(s)передаточная функция.

Искомое решение – переменная на выходе системы (оригинал) получается обратным преобразованием Лапласа:

(8)

где с – абсцисса сходимости.

Формула обращения Римана – Меллина устанавливает однозначное соответствие между оригиналом и изображением в точках непрерывности оригинала. Имеются алгоритмы и программы, позволяющие вычислять интеграл (8) при произвольных функциях Y(s). Практическое вычисление оригинала у(t) удобно производить, основываясь на теореме о вычетах, согласно которой значение интеграла (8) может быть представлено суммой вычетов подынтегральной функции,

,

где ResY(s) – вычет функции Y(s) в полюсе si; i = 1,...,nY; nY – число полюсов изображения Y(s); при t < 0 функция у(t) = 0.

Для обыкновенных линейных дифференциальных уравнений и типовых воздействий изображение Y(s) является дробно-рациональной функцией, которую можно представить в виде суммы простейших дробей:

, (9)

где – производная полинома AY по s; siпростые полюсы;

Оригинал y(t) в соответствии с разложением (9) имеет вид:

.

Импульсная переходная функция (функция веса) w(t) представляет собой реакцию системы на -функцию при нулевых начальных условиях. Поскольку изображение -функции , то функция веса представляет собой обращение по Лапласу передаточной функции и .

Разложение передаточной функции на сумму простейших дробей в случае простых полюсов si; i = 1, …, n имеет вид:

, (10)

где Ciкоэффициент разложения (вычета),

. (11)

Пример. Рассмотрим определение функции веса с помощью формул (10) и (11) для передаточной функции

. (12)

Полюсы передаточной функции s1 = -1; s2 = -2. Разложение (12) на сумму простейших дробей имеет вид:

.

Обратное преобразование Лапласа дает

.

Переходная характеристика h(t) представляет собой реакцию системы на единичную ступенчатую функцию I(t) при нулевых начальных условиях. Поскольку , то .

Полюсами изображения являются полюс воздействия s1 = 0 и полюсы передаточной функции. Легко убедится, что

, .

Пример. Рассмотрим получение переходной характеристики системы с передаточной функцией (12). Разложение изображения H(s) на сумму простейших дробей:

,

где

;

;

.

Следовательно, переходная характеристика описывается функцией

.

В общем случае произвольного воздействия разложение изображения переменной выхода (7) запишется так:

, (13)

где si, i = 1, …, n – полюсы передаточной функции W(s); sk, k = 1, …, nF – полюсы изображения воздействия F(s); принято, что , т. е. полюсы воздействия не равны полюсам передаточной функции (нет обобщенного резонанса).

В выражении (13) первая группа слагаемых определяет переходную составляющую вынужденного движения yпер(t); вторая группа – установившаяся составляющая вынужденного движения yуст(t), третья – свободные движения yсв(t):

.

Установившееся вынужденное движение yуст(t) обусловлено полюсами изображения воздействия sk; переходная составляющая вынужденного движения yпер(t) образуется из-за ненулевых посленачальных условий (изменение начальных условий приложением в момент времени t = 0 конкретного воздействия) и определяется полюсами передаточной функции; свободные движения yсв(t) имеют место при ненулевых предначальных условиях и также определяются полюсами передаточной функции.

Если анализируется автономная система автоматического управления Ms, представленная в форме однородного дифференциального уравнения

; y(0),

то его решение имеет вид:

. (14)

Если изображение Y(s) имеет кратные полюсы, то вместо формул (13), (14) записываются более сложные выражения.

2.3 Построение частотных характеристик

Частотные характеристики (6) – амплитудную R( ) и фазовую можно получать экспериментальным путем, если удается подавать на вход устойчивого объекта гармонические воздействия различных частот из диапазона существенного для выявления требуемых свойств объекта. Статистические методы непараметрической идентификации (спектральный анализ) позволяют оценить значения частотных характеристик путем обработки временных последовательностей на входе и выходе объекта.

Частотные характеристики можно получить по временным характеристикам с помощью преобразования Фурье.

В том случае, когда исходная информация об объекте представлена в форме дифференциального уравнения (1), частотные характеристики строят расчетным путем.

Рассмотрим переходы от дифференциального уравнения n-порядка (1) и передаточной функции (3) к частотным характеристикам.

Установившиеся реакции линейной системы на гармоническое воздействие единичной амплитуды соответствуют частному решению неоднородного дифференциального уравнения (2). Будем искать частное решение:

,

где R(), () амплитуда и фаза, в общем случае зависящие от частоты.

Учтем, что

, ;

, .

Подставим эти соотношения в неоднородное дифференциальное уравнение (2), записанное в операторной форме,

.

После деления обеих частей на ехр{jt} можно записать:

.

Таким образом, амплитудно-частотная характеристика находится как модуль

,

а фазовая частотная характеристика – как аргумент

() = argW(j)

комплексной частотной характеристики W(j).

Одновременно получаем переход от передаточной функции к частотным характеристикам. Комплексная частотная характеристика получается заменой аргумента передаточной функции s на j:

.

В общем случае s может принимать значения на любом контуре комплексной плоскости.

Вычисление значений частотных характеристик для конкретного s = j (а в общем случае s = + j) сводится к вычислению значений полиномов В(s) и А(s) с последующим делением полученных комплексных чисел. При этом получаются значения вещественной P() и мнимой Q() частотных характеристик. Значение амплитудной частотной характеристики вычисляется как

.

Трудности возникают при расчете значений фазочастотной характеристики по формуле

; k = 0, … (15)

Значения () получаются на интервале (- , ), поэтому в случае систем высокого порядка для определения истинных значений фазовых сдвигов принимается предположение о том, что в пределах выбранного шага частот () не изменяется на ± , т.е. корни полиномов B(s) и A(s) располагаются достаточно далеко от мнимой оси.

Соотношение (15) не определяет аргумент () комплексного числа W(j), так как ему вместе с удовлетворяет и + . Однако из-за непрерывности фазовой характеристики (), принимающей отличные от нуля значения, она однозначно характеризуется текущим tg() = Q()/P(), min < < max и начальным (0); min < < max значениями. На этом свойстве непрерывности фазовой характеристики можно получить алгоритм построения частотных характеристик, если истинное значение (0) лежит в пределах (- , ).

2.4 Построение моделей по системе дифференциальных уравнений

Системы дифференциальных уравнений обычно получаются в результате построения аналитическим методом математических моделей физических систем с сосредоточенными компонентами.

Пусть исходные знания об объекте управления имеют вид некоторой физической системы с сосредоточенными компонентами; это может быть, например, многоконтурная электрическая или механическая схема. На основе соответствующих законов по определенным правилам записываются компонентные уравнения и уравнения связей. Далее эти уравнения можно привести к следующему виду:

i = 1, …, N;(16)

q = 1, …, K.

Уравнения (16) можно записать в матричном виде:

A(p)x(t) = B(p)f(t);

y(t) = C(p)x(t),

где х – вектор внутренних переменных размерности N; f и y – векторы переменных входа и выхода размерностей Р и K соответственно; А(р), В(р), С(p) – полиномиальные матрицы; обычно матрица С – числовая, т. е. состоит из нулей и единиц, указывающих, какие из переменных х принимаются за выходные.

Уравнения (16), (17) называют непричинно-следственными, между внутренними переменными xi(t) нет объективных причинно-следственных отношений.

При определенных условиях систему (16) можно записать в форме системы дифференциальных уравнений первого порядка, разрешенных относительно производных,

i = 1, …, n,

дополненной уравнениями выходов

yq(t) = q = 1, …, K.

Модели в терминах вход-состояние-выход используют понятие состояния. Состояние динамического объекта (с памятью) – необходимая и достаточная информация для определения будущего поведения по дифференциальным уравнениям при заданных входных воздействиях независимо от того, каким путем система пришла в это состояние. Для конечномерных систем состояние представляется как n-мерный вектор (t); при t = 0 вектор (0) – начальное состояние. Система дифференциальных уравнений первого порядка в так называемой нормальной форме пространства состояний (стандартизованной векторно-матричной форме) записывается следующим образом:

A + Bf, (0);

(18)

y = C + Df,

где f Р-мерный вектор входа; уK-мерный вектор выхода; A матрица состояний; B матрица входа; C – матрица выхода; D – матрица обхода соответствующих размеров. Первую векторно-матричную строку в системе уравнений (18) называют уравнениями состояний, а вторую – уравнениями выхода.

Пример. При n = 2 дифференциальные уравнения (18) системы с одним входом и одним выходом в раскрытой форме запишутся так:

Матрицы будут иметь следующий вид:

A = ; B = ;

C = (c1 c2); D = d.

Если первое уравнение в системе (18) записать с использованием оператора дифференцирования р, то имеем: (pI – A) = Bf, где I – единичная матрица. Таким образом, уравнения в форме пространства состояний являются частным случаем системы дифференциальных уравнений (17) с матрицей

A(p) = pIA. (19)

Автономная система описывается однородным дифференциальным уравнением

; ,

причем начальные условия являются математическим отражением предыстории. Если они ненулевые, то система совершает так называемые свободные движения. В конечномерных системах свободные движения определяются полностью оператором А(р) и конечным числом начальных условий независимо от того, каким путем система пришла в это состояние к моменту начала наблюдения.

Автономная система может описываться системой дифференциальных уравнений различных порядков:

A(p)x(t) = 0, x(0);

y(t) = Cx(t),

а также дифференциальными уравнениями в форме пространства состояний

= A, (0);

y = C.

Рассмотрим построение моделей вход-выход по системе дифференциальных уравнений. Пусть дана система дифференциальных уравнений (17). Построение модели в терминах «вход-выход» означает исключение внутренних переменных, что проще выполнить, если от дифференциальных уравнений перейти к системе алгебраических уравнений для изображений, приняв нулевые начальные условия:

A(s)X(s) = B(s)F(s); (20)

Y(s) = CX(s).

При небольшом числе уравнений применяют метод последовательных исключений. Пусть, например, объект с одним входом f и одним выходом у имеет две внутренние переменные x1 и х2:

(21)

Решая систему (21) относительно Y(s), получим:

Теперь по выражению

легко получить полиномы числителя и знаменателя передаточной функции и записать выражение для одного дифференциального уравнения. Используем операции перемножения и вычитания полиномов.

В случае, когда требуется вычислить передаточную функцию, связывающую одну из выходных переменных у = xq с одним из воздействий fr, применяют правило Крамера:

, (22)

где полиномиальная матрица Aqr получена из матрицы А заменой q-го столбца r-м столбцом матрицы В. Знаменатель передаточной функции Wqr(s) независимо от номеров входа r и выхода q равен характеристическому полиному системы

A(s) = det A(s) (23)

Этот способ построения моделей вход-выход по системе уравнений (20) сводится к вычислению определителей полиномиальных матриц.

Для примера (21) запишем систему в матричной форме (20); матрицы имеют вид:

A(s) = ; B(s) = . (24)

В соответствии с правилом Крамера по формуле (23) определяем характеристический полином:

числитель передаточной функции W21(s) (здесь r = 1, q = 2) равен

det A21 =

Имеем систему алгебраических уравнений многомерной системы, записанную для изображений переменных (20). В общем случае передаточная матрица системы, т.е. модель вход-выход через полиномиальные матрицы выражается следующим образом:

W(s) = CA-1(s)B(s). (25)

Здесь вычисления связаны с обращением и перемножением полиномиальных матриц. Ясно, что полиномиальная матрица системы А(s) должна быть не особенной, иными словами, ее определитель не равен тождественно нулю. Известно, что

,

где А*(s)присоединенная матрица.

Следовательно, выражение для передаточной матрицы (25) примет вид:

W(s) = CA*(s)B(s)/A(s). (26)

Пример. Модель вход-выход в виде линейного дифференциального уравнения

y(n) + a1y(n-1) + … + an-1y(1) + any = b0u(n) + b1u(n-1) + … + bnu

может быть приведена к модели в переменных состояния следующим образом:

x(1) = xi + 1 + ki*u, где i = 1, n-1;

x(1)n = – anx1an-1x2 –…– a1xn + knu;

y = x1 + k0u;

коэффициенты k рассчитываются по рекуррентным формулам:

k0 = b0;

k1 = b1 – a1k0;

;

,

где n = 3; a1 = 0; a2 = 2; a3 = 4; b0 = 2; b1 = b2 = 0; b3 = –1.

Определим значение ki:

k0 = b0 = 2;

k1 = b1a1*k0 = 0;

k2 = b2a1k1a2k0 = – 4;

k3 = b3a1k2a2*k1a3k0 = – 9.

Тогда исходное уравнение в переменных состояниях (нормальная форма):

x1(1) = x2;

x2(1) = x3 – 4u;

x3(1) = – 4x1 – 2x2 – 9u;

y = x1 + 2u,

или в векторной форме

;

,

где матрицы объекта, управления, наблюдения и обхода, соответственно,

; ; ; .

2.5 Построение моделей вход-выход по уравнениям в форме пространства состояний

Пусть дифференциальные уравнения объекта или системы управления записаны в форме пространства состояний:

A + Bf, (0);

(27)

y = C + df.

Для простоты примем одномерный случай: переменные входа и выхода f и y являются скалярами; матрица входа В – столбец; матрица выхода С – строка; d – скаляр обхода.

Преобразуем уравнения (27) по Лапласу при нулевых начальных условиях:

s(s) = AV(s) + BF(s);

(28)

Y(s) = C(s) + dF(s).

Выразим решение системы алгебраических уравнений – изображение вектора состояний – в следующей форме:

(s) = (sIA)-1BF(s), (29)

где (sI – A)-1 – матрица, обратная характеристической матрице (sI – A) матрицы А; I единичная матрица. Подставим (28) в (29) и получим

Y(s) = W(s)F(s) = [C(sIA)-1B + d]F(s).

Передаточная функция W может быть записана и иначе, если учесть, что

(sIA)-1 = (sIA)* / A(s), (30)

где (sI – A)* – присоединенная матрица;

A(s) = det(sIA), (31)

A(s) – определитель характеристической матрицы – характеристический полином системы дифференциальных уравнений (17).

С учетом (30) передаточная функция запишется как

(32)

Элементами присоединенной матрицы (sI – A)* являются алгебраические дополнения элементов характеристической матрицы (sI – A), т.е. полиномы. Их степени не могут превосходить n – 1. Таким образом, как видно из формулы (32), степень m = degB полинома числителя передаточной функции W не может быть выше степени n = degA характеристического полинома и равна ей только при . Это ограничивает возможности описания динамических систем в нормальной форме пространства состояний .

Имея полиномы передаточной функции (32), легко записать дифференциальное уравнение n-го порядка.

Преобразуем по Лапласу уравнения (27)

s(s) – (0) = A(s) + BF(s)

и получим выражение для изображения вектора состояния

(s) = (sIA)-1(0) + (sIA)-1 BF(s). (33)

В этой сумме первое слагаемое – свободное, а второе – вынужденное движения системы. Для получения оригинала – функции времени (t) выполняется операция обратного преобразования Лапласа. В данном случае выражение для изображения представляет собой матрицу, однако справедлива аналогия со скалярным случаем. Оригинал скалярной функции

имеет вид экспоненты. Оказывается, что аналогичное выражение имеет место и в матричном случае, т.е.

L-1 {(sIA)-1} = eAt = Ф(t),

что является матричной экспонентой, называемой матрицей перехода. Произведению изображений отвечает свертка оригиналов, это справедливо и для матриц. Поэтому вектор состояния как функция времени получается из выражения (33) и имеет следующий вид:

(34)

Изображение переменной выхода при нулевых начальных условиях (0) = 0 получится подстановкой второго слагаемого выражения (33) во второе уравнение системы (27):

Если на вход системы подается единичный импульс, т.е. F(s) = 1, то реакция системы (импульсная переходная функция) определяется из выражения (34):

(35)

Сопоставляя полученную формулу с выражением для передаточной функции (32), замечаем, что

.

Отсюда следует один из способов получения матрицы перехода путем обращения по Лапласу матрицы (sI – A)-1.

2.6 Модели систем управления с раскрытой причинно-следственной структурой

Под структурой систем управления понимают причинно-следственную связь между элементами направленного действия. Понятия «система» и «структура» являются близкими по смыслу. Наиболее общие определения понятий системы и структуры строятся как отношения на множествах, математически это графы. Графы являются универсальным средством описания структур систем. При небольшом числе элементов и связей весьма наглядны диаграммы графов, т.е. их геометрические образы.

В зависимости от элементов множеств рассматриваются различные типы графов. Приведенная на рис.3, а схема, иллюстрирующая принципы управления, отражает типовые структуры причинно-следственных отношений основных элементов систем управления и, по существу, представляет собой ориентированный граф. Электрическая и механическая схемы, изображенные на рис.2, также являются примерами графов, только неориентированных.

Имея в виду структуру связей элементов, иногда говорят о топологии (топографии) системы. Даже без конкретизации вершин и дуг, т.е. только по топологии, можно сделать ряд важнейших выводов о свойствах системы, которые сохраняются при дальнейшем раскрытии неопределенности – уточнении структур операторов и конкретизации значений параметров.

В зависимости от подхода к моделированию и от конкретного содержания элементов исходного множества и элементов отношения модели с раскрытой структурой могут быть представлены структурными схемами, сигнальными графами, системами дифференциальных уравнений в причинно-следственной форме и некоторыми другими формами.

Структурная схема (C-граф) представляет собой причинно-следственную связь звеньев. Линейное звено (рис.7, а) в общем случае имеет любое число входов; оно преобразует сумму входов в единственную переменную выхода по некоторому оператору Wi (рис.7, б):

В частном случае оператора тождественного преобразования звено выступает как сумматор.

Структурная схема является ориентированным графом и состоит из множества вершин W = {W1, , WN} и множества дуг Х = {(Wi, Wj)} – упорядоченных пар вершин. Дугам графа соответствуют переменные xi; i = 1,..., N, а вершинам – звенья. Для того, чтобы отличать рассматриваемый граф от сигнальных графов других типов, назовем его С-графом. На языке теории бинарных отношений С-граф определяется как пара множеств:

С = < W,X >,

Рис.8. Структурная схема (С-граф)

а структурная схема (геометрический образ) называется также диаграммой графа (рис.8). Вершина С-графа – звено общего вида, по определению суммирует переменные заходящих дуг. Это позволяет отказаться от специального элемента суммирования, что отличает С-графы от классических структурных схем.

Дуга С-графа – элемент (Wi, Wj) отношения Х задает причинно-следственную связь между двумя звеньями, причем выход j-го звена является входом i-го. Дуге (Wi, Wj) соответствует переменная xj.

Теоретико-множественное описание систем дает естественный способ ввода и редактирования моделей систем управления как последовательного раскрытия неопределенности. Для этого модели упорядочиваются по рангам неопределенности R = 0, 1, 2, 3.

Множество W звеньев задает модель нулевого ранга Ms(0). Для примера С-графа, диаграмма которого изображена на рис.8, множество перечисляется так:

W = {W1, W2, W3, W4}.

В случае однотипных звеньев можно ограничиться заданием числа вершин графа (звеньев), т.е. мощности множества .

Дополнение модели Ms(0) множеством Х дает модель первого ранга Мs(1) – это топология (топография) системы. Для С-графа, изображенного на рис.8, множество перечисляется так: Х = {(1,3), (1,4), (2,1), (3,2), (4,1)}. В перечислении приведены только индексы (номера) звеньев.

Дальнейшее раскрытие неопределенности достигается при задании структур операторов вершин. Для рассматриваемого класса систем передаточные функции являются отношениями полиномов: Wi(s) = Bi(s) / Ai(s). Задание их структур сводится к указанию степеней mi и ni полиномов Bi и Ai. Когда для всех звеньев заданы структуры операторов, образуется модель системы структурного ранга Мs (2).

Пусть для рассматриваемого примера системы передаточные функции звеньев имеют вид W1(s) = k1; W2(s) = k2 / (1 + T2s)2; W3(s) = -1; W4(s) = -4s / (1 + T4s). Информацию о структурах операторов можно закодировать массивами степеней полиномов числителей и знаменателей передаточных функций: {0,0,0,1} и {0,2,0,1}.

Результатом конкретизации значений всех коэффициентов полиномов является полностью определенная модель третьего, параметрического ранга Мs (3).

Ранее изложено описание собственно системы (автономной системы). Для описания связей системы со средой следует указать звено, на вход которого подается воздействие, и звено, выход которого является выходом системы. На примере С-графа (рис.8) номер входного звена r = 1, а выходного q = 2. В результате оказывается определенной модель системы со связями со средой Mysf (3). При изучении влияния вариаций звеньев на характеристики системы указывается варьируемое звено. На рис.8 им является звено W2.

Сигнальный граф (граф Мэзона) является одной из удобных в теории и расчетной практике форм представления моделей систем управления.

Модель системы в форме сигнального графа определяется как бинарное отношение W на множестве переменных Х = {x1, …, xN}: G = < X,W >

Элементам отношения W = {(xi xj)} ставятся в соответствие операторы преобразования переменных. На диаграммах сигнальных графов переменным отвечают вершины, где суммируются сигналы заходящих дуг, а элементам отношения – дуги. Способы задания моделей различных рангов в форме сигнальных графов те же, что и для С-графов.

Рис.9. Диаграмма сигнального графа

На рис.9 изображена диаграмма сигнального графа – модель топологического ранга, несущая ту же информацию о системе, что и структурная схема (рис.8). Необходимо подчеркнуть, что формы представления моделей и способы их отображения могут быть различными – символьными или алгебраическими (уравнения, матрицы), геометрическими или топологическими (диаграммы графов). Информация о моделях различных рангов R последовательно раскрывается описанием множеств, задающих: состав элементов R = 0; топологию причинно-следственных связей между ними R = 1; структуры операторов R = 2; параметры R = 3.

Теоретико-множественное представление структур систем в форме графов обеспечивает формализацию описания моделей, упрощает кодирование их графических образов, а также разработку алгоритмов анализа систем.

2.7 Типовые звенья автоматических систем управления

При исследовании САУ ее разбивают на простые звенья. В результате этого математическое описание каждого звена может быть составлено без учета связей его с другими звеньями, а описание всей САУ получено как совокупность уравнений отдельных звеньев.

Уравнение усилительного звена имеет вид:

y = Kx. (36)

Передаточная функция в этом случае:

W(p) = K. (37)

Амплитудно-фазовая характеристика:

W(j) = K. (38)

Примером усилительного звена является рычаг. Уравнение рычага имеет вид

Уравнение апериодического звена имеет вид:

. (39)

Передаточная функция:

Характеристики

Тип файла
Документ
Размер
6 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6381
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее