85761 (597823), страница 2
Текст из файла (страница 2)
Активными двухполюсниками электрических схем являются источник напряжения и источник тока.
Уравнения связи двухполюсников в конкретной схеме выражаются законами Кирхгофа, представляющими собой условия непрерывности токов и равновесия напряжений:
первый закон – сумма токов в любом узле равна нулю;
второй закон – сумма напряжений в любом контуре равна нулю.
Рассмотрим пример электрической схемы, изображенной на рис.2, б. Пусть выходом схемы является напряжение на емкости . В соответствии с первым законом имеем:
.
Второй закон для единственного контура запишется так:
.
Выражая напряжения и
через
:
;
,
получим дифференциальное уравнение второго порядка
.
Рассмотрим механическую систему (рис.2, в). Пассивными двухполюсниками механических схем являются механическое сопротивление В, масса М и упругость K, описываемые следующими уравнениями для сил f и перемещений x или скоростей v:
;
;
.
Идеальными источниками механической энергии являются источник скорости и источник силы. Уравнения связей механических двухполюсников выражают условия равновесия сил и непрерывности перемещений (скоростей). В соответствии с приведенными ранее уравнениями механических двухполюсников и уравнениями связей записывают дифференциальное уравнение для перемещений:
.
В этом однородном уравнении отсутствует правая часть, описывающая внешнее воздействие на механическую систему, т. е. она автономна. Свободные движения автономной системы являются следствием ненулевых начальных условий, например начального смещения х(0) от равновесного состояния.
При моделировании объектов различной природы – электрической, механической поступательной и вращательной, гидравлической или пневматической и др., а также смешанной природы, например электромеханической (двигатели, генераторы), могут быть выделены аналогичные пассивные и активные компоненты. Дальнейшей абстракцией при построении моделей физических объектов с сосредоточенными компонентами является полюсный граф. Эти универсальные топологические модели позволяют унифицировать составление уравнений. Специфика предметной области проявляется только на этапе построения схемы и полюсного графа, а также на заключительном этапе интерпретации результатов анализа и синтеза.
Рис.3. Схема экспериментального исследования объекта
При проектировании систем управления, когда некоторые элементы реально не существуют, аналитический метод построения моделей оказывается единственно возможным.
Если свойства объекта познаны в недостаточной степени, либо происходящие явления слишком сложны для аналитического описания, для построения математических моделей реально существующих объектов применяется экспериментальный способ, который заключается в активных экспериментах над объектом или в пассивной регистрации его поведения в режиме нормальной эксплуатации (рис.3, а). В результате обработки данных наблюдений получают модели в требуемой форме. Совокупность этих операций объединяется термином идентификация объекта. В результате идентификации получаются модели вход-выход (рис.3, б). Модель зависит не только от свойств объекта, но также от входных сигналов, их разнообразия.
Практически об идентифицируемом объекте всегда имеется какая-то априорная информация, т. е. он не является «черным ящиком». Это дает возможность комбинировать оба способа – вначале аналитически строить структуру модели и определять начальные приближенные значения параметров, а далее обработкой экспериментальных данных уточнять их значения.
1.4. Особенности структурных моделей систем управления
Особенностью математических моделей систем управления является то, что они не только содержат априорную информацию о ее динамических свойствах, необходимую для изучения поведения системы в целом, но также отражают процессы получения и обработки текущей информации о цели системы, состоянии объекта и воздействиях среды для принятия решения по оказанию на объект надлежащего управляющего воздействия. Поскольку модели элементов и систем являются основным материалом в задачах анализа и синтеза (исходными данными и результатами), то им и алгоритмам их преобразования в теории управления отводят важное место.
Понятие модели системы управления неотделимо от понятия структуры. Под структурой систем управления понимают причинно-следственные взаимосвязи элементов (подсистем) направленного действия. Именно ориентированность элементов и их взаимосвязей отличает модели систем управления от структурных моделей физических систем.
При построении моделей с раскрытой причинно-следственной структурой объект или систему предварительно расчленяют на элементы направленного действия и рассматривают их как преобразователи сигналов. Элементы выделяются, как правило, по функциональному признаку, причем сами эти функции понимаются в контексте операций управления: объект управления; измерительные, преобразовательные и усилительные элементы; управляющее устройство; исполнительный механизм; управляющий орган. Далее для каждой части строится своя модель, а затем модели частей связывают между собой таким же образом, как соединялись сами части.
Если части системы образуют контуры, то моделирование по частям встречается с принципиальной проблемой: не зная свойств частей, нельзя описать сигналы на их входах; не зная сигналов, нельзя правильно идентифицировать отдельные части. Достоинство моделирования по частям заключается в наглядности механизма преобразования входов в выходы.
2. Линейные модели и характеристики систем управления
2.1 Модели вход-выход
Основными формами представления конечномерных линейных непрерывных стационарных детерминированных операторов преобразования входных переменных f(t) в переменные выхода y(t) являются: дифференциальные уравнения, передаточные функции, временные и частотные характеристики. Для одномерных систем переменные f(t) и y(t) являются скалярами. Эти и некоторые другие представления операторов рассматриваемого класса моделей могут быть приняты за основу задания динамических свойств в терминах вход-выход. Если для конкретных исследований та или иная форма оказывается более предпочтительной, ставится и решается задача перехода от одной формы к другой, например задача построения временных и частотных характеристик по дифференциальному уравнению или передаточной функции.
Обыкновенное линейное дифференциальное уравнение n-порядка с постоянными коэффициентами обычно записывается так:
(1)
Если ввести оператор дифференцирования по времени , то уравнение (1) запишется в компактном виде:
A(p)y(t) = B(p)f(t), (2)
где A(p) = anpn + …… + a1p + a0; B(p) = bmpm + …… + b1p + b0 – операторные полиномы. Дифференциальное уравнение дополняется начальными условиями .
Передаточная функция равна отношению изображений по Лапласу переменных выхода и входа при нулевых начальных условиях W(s)=Y(s)/F(s), где интегральное преобразование Лапласа определяется так:
Преобразуя дифференциальное уравнение (1) при нулевых начальных условиях, получаем алгебраическое уравнение для изображений:
A(s)Y(s) = B(s)F(s).
Отсюда следует, что передаточная функция легко записывается по дифференциальному уравнению
W(s) = B(s)/A(s) (3)
и, наоборот, по передаточной функции сразу записывается дифференциальное уравнение.
Зная передаточную функцию и изображение переменной входа, легко найти изображение выхода
Y(s) = W(s)F(s).
Пример. Пусть система описывается дифференциальным уравнением второго порядка:
Преобразуем это уравнение по Лапласу, для чего воспользуемся свойством линейности оператора преобразования L, а также теоремой о дифференцировании оригинала:
a2(s2Y(s) – sy(0) – y(0)) + a1(sY(s) – y(0)) + a0Y(s) = b0F(s).
Последнее уравнение перепишем в следующем виде:
(a2s2 + a1s + a0)Y(s) = b0F(s) + a2sy(0) + a2y'(0) + a1y(0).
При нулевых начальных условиях y(0) = y'(0) = 0 отношение изображений, т.е. передаточная функция
Оператор, связывающий вход и выход, можно задать коэффициентом и множествами нулей (корней полинома) zj; j = 1, …, m и полюсов (корней полинома знаменателя) pi; i = 1, …, n. Передаточная функция будет равна:
(4)
В отличие от полиномиальной формы (3) форму задания передаточных функций (4) иногда называют факторизованной.
Вводится понятие структуры оператора преобразования. Для дифференциального уравнения n-го порядка (1) и передаточной функции (3) задание структуры означает задание целых чисел – степеней n = deg A и m = deg B – полиномов А и В.
Параметрами оператора являются коэффициенты полиномов.
Временные характеристики являются одной из форм представления операторов преобразования переменной f(t) в переменную y(t). Импульсная переходная функция, или функция веса w(t) – реакция системы на единичный идеальный импульс (рис.4, а) при нулевых начальных условиях. переменная выхода определяется как интеграл свертки:
(5)
т.е. в этом случае оператор преобразования имеет форму интегрального уравнения.
Другая часто употребляемая временная характеристика – переходная (рис.4, б) характеристика h(t) – реакция системы на единичную ступенчатую функцию1(t) при нулевых начальных условиях. На рис.4 приведен примерный вид временных характеристик для системы второго порядка.
Частотные характеристики элементов и систем представляют собой зависимость параметров установившихся реакций на гармонические сигналы всех частот и единичных амплитуд. В линейных системах форма и частота установившейся реакции совпадают с входом. Комплексная частотная характеристика W( ) дает возможность определить амплитуду
и фазу
гармонического сигнала на выходе системы по значению частоты:
(6)
где и argWj – амплитудная и фазовая частотные характеристики;
, и
– вещественная и мнимая частотные характеристики.
На рис.5. изображен пример годографа W , называемого амплитудно-фазовой характеристикой (АФХ). Реальные объекты с повышением частоты хуже пропускают сигналы – ослабляют амплитуду и вносят отрицательный фазовый сдвиг.
Амплитудно-частотные характеристики удобно представлять в логарифмическом масштабе: Если частота изменяется в логарифмическом масштабе, то логарифмические амплитудно-частотные характеристики (ЛАЧХ) во многих практически важных случаях мало отличаются от прямолинейных асимптот с наклонами, кратными 20 дБ/дек. На рис.6 приведен примерный вид асимптотической ЛАЧХ; штриховая кривая – точная ЛАЧХ. Там же указаны наклоны асимптот в децибелах на декаду.
Хотя за основу задания динамических свойств систем может быть принята любая из форм представления операторов, для конкретных исследований та или иная форма оказывается более рациональной и возникает необходимость перехода от одной формы к другой. Многие задачи анализа связаны с преобразованием формы представления оператора. В ряде случаев эта процедура составляет наиболее трудоемкий этап анализа – построение частной модели, т.е. приведение к форме, позволяющей непосредственно вычислить показатели качества и вывести суждение о соответствии поведения системы заданным требованиям (например, построение временных или частотных характеристик системы управления).