63370 (597587), страница 9

Файл №597587 63370 (Цифровая схемотехника) 9 страница63370 (597587) страница 92016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 9)

Максимальное число последующих слагаемых в выражении (1.21) может быть равным 8 (в соответствии с коэффициентом объединения по входам), а каждое слагаемое может быть отображено конъюнкцией максимально от восьми аргументов. Таким образом, выражения (1.20) и (1.21) определяют логико-математическую модель микросхемы К155ЛР1.

Предлагаем Вам самостоятельно найти логико-математическую модель микросхемы К155ЛР3, используя для этого показанное на рис.1.16,г её условное графическое обозначение.

Логические элементы ИЛИ-И

Эти логические элементы реализуют фрагменты конъюнктивных нормальных форм (КНФ) булевых функций, то есть логическое произведение логических сумм от нескольких аргументов. Например, самым простым будет элемент 2-2ИЛИ-2И. Такой элемент описывается функцией вида

X = (a + b)(c + d). (1.22)

На рис.1.17 приведено УГО этого элемента, карта Карно его выходной функции X и функциональная эквивалентная схема.

В интегральном исполнении выпускаются подобные ЛЭ, например, в серии ИМС ЭСЛ есть микросхема К500ЛС118, представляющая собой два логических элемента 2-3ИЛИ-2И с одним общим входом. На рис.1.17,г показано УГО этой микросхемы. По условному её графическому обозначению можно составить следующие логические выражения выходных функций Y и Z:

Y = (x1 + x2 + x3)(x4 + x5 + x6), (1.23)

Z = (x6 + x7 + x8)(x9 + x10 +x11).

Выражения (1.23) являются логико-математической моделью рассматриваемой микросхемы. Наличие общего входа x6 даёт возможность использовать микросхему К500ЛС118 в качестве двух независимых элементов вида 2-3ИЛИ-2И (при x6=0),


Рис.1.17. Логические элементы типа ИЛИ-И: УГО элемента 2-2ИЛИ-2И (а) и его функциональная эквивалентная схема (б); булева матрица его выходной функции (в); УГО микросхемы К500ЛС118)



либо в качестве двух независимых элементов 3ИЛИ (при x6 =1). В этом легко убедиться, подставив соответствующие значения x6 в выражения (1.23).

Логические элементы ИЛИ-НЕ / ИЛИ

По существу, эти элементы являются элементами ИЛИ с двумя выходами прямым и инверсным. Поэтому они реализуют одновременно дизъюнкцию и инверсию дизъюнкции от одного и того же множества входных сигналов и описываются одноимёнными логическими функциями. Так на рис.1.18,а показано УГО элемента 3ИЛИ-НЕ / 3ИЛИ и условные графические обозначения микросхем серии К500, содержащих подобные логические элементы. На рисунке также приведены карты Карно выходных функций указанного элемента, функциональная эквивалентная его схема (рис.1.18,б) и УГО микросхем К500ЛМ105 (рис.18,д), К500ЛМ109 (рис.1.18,е) и К500ЛМ101 (рис.1.18,ж). Следует отметить, приведённый вариант функциональной схемы не единственный вместо элемента 3ИЛИ-НЕ может быть использован элемент 3ИЛИ и также элемент НЕ. По условным графическим обозначениям перечисленных микросхем нетрудно уяснить, что ИМС К500ЛМ105 содержит три независимых элемента: два элемента 2ИЛИ-НЕ/ 2ИЛИ и один элемент 3ИЛИ-НЕ /3ИЛИ.

А

Рис. 1.18. Элементы ИЛИ-НЕ /ИЛИ: УГО элемента 3ИЛИ-НЕ /3ИЛИ (а) и его функциональная схема (б); карты Карно выходных функций X и Y (в, г); УГО микросхем К500ЛМ105 (д), К500ЛМ109 (е), К500ЛМ101 (ж)

налогично можно уяснить состав микросхемы К500ЛМ109


(рис.1.18,е).

Обратите внимание на УГО микросхемы К500ЛМ101(рис.1.18,ж). Микросхема содержит 4 однотипных элементов типа 2ИЛИ-НЕ /2ИЛИ с раздельными выходами и с одним общим входом х5. Если сигнал по этому входу х5 = 0, то микросхему можно рассматривать как набор из 4-х элементов НЕ и, в то же самое время, как набор из четырёх повторителей сигналов по входам х1, х2, х3 и х4. Если же х5 = 1, то независимо от значений других входных сигналов на прямых выходах установятся сигналы лог.1, а на инверсных выходах сигналы лог.0. Таким образом, каждый элемент в микросхеме играет роль управляемого инвертора-повторителя.

Дополнительно отметим, что в серии К500 имеются логические элементы вида ИЛИ-И-НЕ/ИЛИ-И, например микросхема К500ЛК117. Это практически, аналог микросхемы К500ЛС118 (рис.1.17,г) с тем отличием, что каждый элемент 2-2ИЛИ-2И имеет прямой и инверсный выходы.

Мы рассмотрели практически все широко используемые при построении цифровых устройств логические элементы. Анализируя изложенный материал, можно придти к следующим выводам:

  1. Существует возможность однозначного перехода от аналитического описания ЛЭ к его условному графическому обозначению либо к функциональной эквивалентной его схеме.

  2. Существует возможность однозначного перехода от УГО элемента либо от его функциональной схемы к аналитическому его описанию. При этом функционирование элемента описывается алгебраическими выражениями логических функций, реализуемых элементом.

3. Функциональные схемы сложных ЛЭ можно построить на различных более простых (менее сложных) логических элементах, причём существует неоднозначность (многовариантность) построения функциональных эквивалентных схем для одного и того же ЛЭ.

Поскольку логические устройства по существу представляют собой совокупность взаимосвязанных логических элементов, то сформулированные выводы можно с успехом распространить и на устройства.

Вместе с тем возникает проблема, каким образом можно построить устройство с минимальным количеством ЛЭ и на элементах минимальной номенклатуры. Другими словами, как построить устройство с минимальными аппаратурными затратами.

Решение этой проблемы основывается на знании функционально полных наборов логических элементов и выборе по определённым критериям соответствующего набора.

1.3.15. Функционально полные наборы логических элементов

Функционально полным называется такой набор ЛЭ, на которых (из которых) можно построить любое логическое устройство сколь сложно оно ни было бы. Функциональная полнота некоторого набора логических элементов, в свою очередь, определяется полнотой некоторой системы логических функций, которые являются логико-математическими моделями выбранного набора ЛЭ.

В булевой алгебре существует теорема Поста-Яблонского, согласно которой устанавливаются критерии полноты некоторой системы логических функций. Сущность этой теоремы сводится к следующему.

Некоторая система логических функций будет полной, если она содержит:

а) функцию, не сохраняющую логическую константу 0,

f (x1, x2, xn) = f (0, 0, 0) 0;

б) функцию, не сохраняющую логическую константу 1,

f (x1, x2, xn) = f (1, 1, 1) 1;

в) функцию, не являющуюся самодвойственной,

;

г) функцию, не являющуюся линейной,

f (x1, x2, xn) х1 х2 хn х1 х2 х1 х2xn;

д) функцию, не являющуюся монотонной.

Если Х1 есть некоторый фиксированный набор значений аргументов функции f (x1,x2,x3,x4), например Х1 = <x1, x2, x3, x4> = , а Х2 = <x1, x2, x3, x4> = другой набор этих аргументов, то можно считать, что Х1 > Х2, т.е. набор Х2 меньше набора Х1.

Характеристики

Тип файла
Документ
Размер
5,75 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6455
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее