62267 (597554), страница 3
Текст из файла (страница 3)
квантильний коефіцієнт переходу, що відповідає довірчій імовірності
.
2.9.3. Визначення сумарної випадкової похибки вимірювань
В основу підсумовування випадкових складових похибки вимірювань покладена властивість дисперсії для суми залежних випадкових величин, яка стосовно похибок записується так:
, (2.23)
де дисперсія суми n випадкових похибок;
дисперсія j-ї складової випадкової похибки,
;
взаємна кореляційна функція, або взаємний кореляційний момент j‑ї та l-ї складових випадкової похибки, причому запис
означає, що підсумовування розповсюджується на всі можливі попарні сполучення складових, для яких
. Взаємна кореляційна функція
визначається рівнянням
, (2.24)
де відповідно СКВ (або їх оцінки
) j-ї та l-ї складових випадкової похибки:
;
нормована взаємна кореляційна функція, або коефіцієнт кореляції:
.
Переходячи у формулі (2.23) до СКВ випадкових похибок з урахуванням (2.24), одержимо вираз для обчислення СКВ сумарної випадкової похибки за її складовими
. (2.25)
Звернемо увагу на те, що ця формула підсумовування випадкових похибок є універсальною, оскільки СКВ (і дисперсія) не залежить від закону розподілу похибок.
Відзначимо, що строго врахувати всі кореляційні зв’язки, а отже, і точно визначити коефіцієнт кореляції між похибками досить складно і не завжди можливо. Так, коефіцієнт кореляції між величинами визначається виразом
,
де результати q-го спостереження величин
,
відповідно,
;
Застосування формули (2.25) потребує ускладнення експерименту і обчислювань. Тому вона не знаходить широкого практичного застосування, а для її спрощення користуються нижчевказаними рекомендаціями щодо задання коефіцієнта кореляції
За степенем корельованості випадкові похибки слід розділити лише на два види: сильно корельовані і слабко корельовані. Умовною границею між сильною і слабкою кореляціями випадкових похибок вважають умову . Враховуючи це, до сильно корельованих належать похибки, для яких
, і для них приймають
. Прикладами сильно або жорстко корельованих похибок є похибки, викликані однаковою причиною (загальним джерелом живлення, майже однаковим впливом змінювання температури і т.п.), і в інших випадках, коли тісні кореляційні зв’язки між похибками явно проглядаються. До слабко корельованих належать похибки, для яких
і для них приймають
. Такі похибки звичайно викликаються різними причинами, причому такими, що не мають між собою явного зв’язку. Вони також називаються незалежними. Проміжні значення коефіцієнта кореляції, тобто крім
або
, при оцінюванні випадкової похибки, як правило, не використовуються.
У практиці вимірювань здебільшого мають справу з незалежними випадковими похибками, для яких і формула (2.25) набуває вигляду
(2.26)
Якщо СКВ похибки визначити у відносних одиницях, то
(2.27)
де відносне СКВ j-ї складової похибки.
Інколи для спрощення розрахунків переходять від підсумовування дисперсій (або СКВ) випадкових похибок до підсумовування максимальних (допустимих) значень абсолютних похибок . Тоді аналогічно формулам (2.22) і (2.26) маємо
(2.28)
Формула для СКЗ сумарної випадкової похибки дає завищену оцінку в порівнянні з (2.26), але ця оцінка більш вірогідна, ніж "оцінка зверху"
.
Таким чином, арифметичне підсумовування використовується для грубої оцінки сумарної похибки, названої "оцінкою зверху" (або за максимумом), і при випадковому характері похибок. Воно зводиться до підсумовування максимальних значень окремих складових похибок. При такому підході передбачається, що всі складові випадкової похибки мають одночасно і максимальне значення, і однаковий знак. Очевидно, ймовірність такого збігу дуже мала, тому арифметичне підсумовування дає завищену оцінку сумарної випадкової похибки, і похибка цієї оцінки буде тим істотніша, чим більше число складових підсумовується. Тому арифметичне підсумовування випадкових похибок можливе при грубій оцінці сумарної похибки, коли вона містить 23 складових.
Переходячи в (2.28) до відносних похибок, маємо
де
При умові формула (2.25) набуває вигляду
, (2.29)
де знак "+" означає, що для складових з позитивною кореляцією ( ) СКВ
треба брати зі знаком "+", а для складових з негативною кореляцією
брати зі знаком "". Знак модуля належить до
.
Зокрема, при підсумовуванні двох складових випадкової похибки, СКВ яких , з (2.29) маємо
,
тобто наявність жорсткої кореляції ( ) між випадковими складовими похибки приводить до переходу від геометричного їх підсумовування до алгебраїчного.
Таким чином, при виборі того або іншого методу (правила) підсумовування складових похибки визначальною ознакою є не розділ їх на систематичні і випадкові, а ступінь (рівень) кореляційних зв’язків: сильний або слабкий.
Якщо для складових випадкової похибки задано границі довірчих інтервалів і довірчі ймовірності
, то СКВ кожної із складових, згідно з виразом (2.9), знаходять за формулою
.
Якщо всі складові випадкової похибки підлягають однаковому закону розподілу і мають однакову довірчу ймовірність P, тоді і
.
При нормальному законі розподілу всіх складових або при кількості складових n 5 сумарна випадкова похибка має нормальний закон розподілу. Отже, її границі довірчого інтервалу з довірчою ймовірністю P можна визначити так: .