49769 (597461), страница 4

Файл №597461 49769 (Математические и логические основы информатики) 4 страница49769 (597461) страница 42016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Есть еще одна логическая операция, аналогичная штриху Шеффера и называемая стрелкой Пирса. Она обозначается символом и представляет собой отрицание дизъюнкции (или конъюнкцию отрицаний): XY (XY) X&Y.

Можно убедиться, что X XX.

А отсюда: XY ( XY) (XY) ( XY).

Таким образом, через стрелку Пирса могут быть выражены дизъюнкция и отрицание, а значит и все остальные операции логики высказываний. То есть система логических связок, содержащая единственную операцию - стрелку Пирса, является полной.

Систему булевских функций будем называть функционально полной, если любую булевскую функцию можно выразить в виде суперпозиции (взаимной подстановки) функций из этой системы.

В соответствии с высказанными выше соображениями о полноте системы логических связок и задании булевских функций формулами логики высказываний, можно сделать вывод о функциональной полноте следующих систем булевских функций:

S0 = {φ3(x), f2(x,y), f8(x,y)} - отрицание, конъюнкция, дизъюнкция.

S1 = {φ3(x), f2(x,y)} - отрицание, конъюнкция.

S2 = {φ3(x), f8(x,y)} - отрицание, дизъюнкция.

S3 = {f15(x,y)} - отрицание конъюнкции (штрих Шеффера).

S4 = {f9(x,y)} - отрицание дизъюнкции (стрелка Пирса).

S5 = {φ3(x), f14(x,y)} - отрицание, импликация.

В последующем мы увидим, что с точки зрения проектирования вычислительных устройств особый интерес представляют S3 и S4.

Общий критерий функциональной полноты системы булевских функций, выражающий необходимые и достаточные условия, носит название критерия Поста-Яблонского.6 Его изложение выходит, к сожалению, за рамки настоящего пособия.

Применение аппарата булевских функций к анализу и синтезу комбинационных схем

Рассмотрим так называемые схемы из функциональных элементов (комбинационные схемы), вычисляющие (реализующие) булевские функции.

Под функциональным элементом будем понимать некоторое устройство (внутренняя структура которого нас не интересует7), обладающее такими свойствами:

  1. оно имеет n1 упорядоченных входов и один выход;

  2. на входы этого устройства могут подаваться сигналы, принимающие два значения, которые будем обозначать через 0 и 1;

  3. при каждом наборе сигналов на входах устройство выдает один из сигналов (0 или 1) в тот же момент, в который поступили сигналы на входе;

  4. набор сигналов на входах однозначно определяет сигнал на выходе, то есть, если в различные моменты времени на входы поступает одна и та же комбинация сигналов, то в эти моменты на выходе будет один и тот же сигнал.

С каждым функциональным элементом с n входами сопоставим булевскую функцию от n переменных f(x1,x2,…,xn), определяемую следующим образом: входу с номером i (i = 1, 2, … , n) ставится в соответствие переменная xi и с каждым набором <1, 2, … , i, …, n> этих переменных (i{0,1}) сопоставляется число f(1, 2, … , i, …, n), равное 0 или 1 в зависимости от того, какой сигнал вырабатывается на выходе при подаче этого набора сигналов на входы данного функционального элемента. О функции f(x1,x2,…,xn) будем говорить, что данный функциональный элемент ее реализует.

В дальнейшем мы будем рассматривать функциональные элементы, реализующие полную систему логических операций: конъюнкцию, дизъюнкцию, отрицание. Эти элементы представлены на рис.2.18.

Теперь определим понятие "схема из функциональных элементов в базисе {&, , }" и понятия ее выходов и входов. Определение будет носить индуктивный характер (подобно тому, как выше определялось понятие формулы логики высказываний).

  1. Каждый функциональный элемент представляет собой схему из функциональных элементов с теми же входами и выходами, что и у этого элемента.

  2. Если 1 - схема из функциональных элементов и два ее входа соединены вместе, то получающаяся конструкция будет схемой из функциональных элементов. Входами являются все несоединенные входы 1 и еще один вход, соответствующий двум соединенным входам схемы 1, а выходом схемы - выход 1.

  3. Если 1 и 2 - две схемы из функциональных элементов, то конструкция , получающаяся соединением какого-либо входа схемы 2 с выходом схемы 1, также будет схемой из функциональных элементов. Входами схемы будут все входы схемы 1 и все входы схемы 2, за исключением того, который соединен с выходом схемы 1, а выходом является выход схемы 2.

4. Если в схеме из функциональных элементов 1 ее вход соединить с выходом некоторого функционального элемента из 1 без образования цикла для какого-либо функционального элемента (то есть его выход не должен соединяться, быть может, через другие функциональные элементы из 1 с его входом), то получившаяся конструкция является схемой из функциональных элементов. Выходом будет выход 1, а входами - все входы 1, кроме того, который соединен с выходом функционального элемента. На рис.2.21 приведен пример подобной схемы:

Определение схемы из функциональных элементов завершено.

Теперь определим булевскую функцию, реализуемую данной схемой.

  1. Если схема является функциональным элементом, то булевская функция, ею реализуемая, уже определена.

  2. Если схема 1 реализует булевскую функцию f(x1,x2,…,xn), то схема , построенная в п.2 определения схемы из функциональных элементов, реализует булевскую функцию, полученную из f(x1,x2,…,xn) отождествлением переменных, отвечающих объединенным входам схемы 1.

  3. Пусть схема 1 реализует булевскую функцию f(x1,x2,…,xn), а схема 2 - булевскую функцию g(y1,y2,…,ym). Считаем, что все переменные x1,x2,…,xn,y1,y2,…,ym попарно различны. Тогда схема , построенная в п.3 определения схемы из функциональных элементов, реализует булевскую функцию g(y1, y2, …, yi-1, f(x1,x2,…,xn), yi-1, … , ym), то есть функцию, получаемую путем подстановки в функцию g(y1,y2,…,ym) вместо аргумента yi, сопоставленного входу схемы 2, соединенному с выходом 1, функции f(x1,x2,…,xn).

  4. Булевская функция, реализуемая схемой , построенной в п.4 определения схемы из функциональных элементов, получается из булевской функции, реализуемой схемой 1, операцией, типа описанной в п. 3 настоящего определения. Например, приведенная на рис.2.21 схема реализует функцию f(x1,x2,x3,x4) = ( x1& x2&(x3x4)).

Определение булевской функции, реализуемой схемой из функциональных элементов, завершено.

Поскольку, как отмечалось выше, любую булевскую функцию от n переменных можно выразить в виде суперпозиции функций, образующих полную систему булевских функций (в частности, S0 = {φ3(x), f2(x,y), f8(x,y)} - отрицание, конъюнкция, дизъюнкция), то значит, что и любая булевская функция может быть реализована соответствующей схемой из функциональных элементов.

Схемы из функциональных элементов имеют разнообразное техническое применение. Во многих реальных автоматических устройствах есть блоки, представляющие собой соединение схем из функциональных элементов.

В качестве примера опишем в виде схемы из функциональных элементов один из основных узлов ЭВМ - двоичный сумматор - устройство, предназначенное для сложения n-разрядных двоичных чисел.

Пусть имеются два двоичных числа:

X = xn xn-1 xn-2 … x2 x1 и Y = yn yn-1 yn-2 … y2 y1

(Здесь xi, yj - двоичные цифры 0 или 1.)

Требуется получить число Z, равное сумме чисел X и Y.

Рассмотрим вначале одноразрядный двоичный сумматор на два входа.

Здесь: xi - i- тая цифра числа X; yi - i-тая цифра числа Y; zi - i-тая цифра результата сложения - числа Z; pi+1 - перенос в следующий, (i+1)-ый разряд.

Входы сумматора - xi и yi, выходы сумматора - zi и pi+1.

Опишем выходы сумматора как булевские функции его входов в виде следующей таблицы:

xi

yi

zi

pi+1

0

0

0

0

0

1

1

0

1

0

1

0

1

1

0

1

Легко видеть:

zi = f1(xi,yi) = xi&yi xi&yi; pi+1 = f2(xi,yi) = xi&yi.

Соответствующие схемы из функциональных элементов представлены на рис.2.23.

Рис.2.23. Функциональная схема одноразрядного двоичного сумматора на два входа.

Рассмотрим теперь одноразрядный двоичный сумматор на три входа. Схематическое представление его на рис.2.24.

В отличие от предыдущего случая теперь мы учитываем перенос из младшего разряда. Здесь: xi - i- тая цифра числа X; yi - i-тая цифра числа Y; pi - перенос из предыдущего, i-го разряда; zi - i-тая цифра результата сложения - числа Z; pi+1 - перенос в следующий, (i+1)-ый разряд.

Входы сумматора - xi, yi, pi, выходы сумматора - zi и pi+1.

Опишем выходы сумматора как булевские функции его входов в виде следующей таблицы:

хi

yi

pi

zi

pi+1

0

0

0

0

0

0

0

1

1

0

0

1

0

1

0

0

1

1

0

1

1

0

0

1

0

1

0

1

0

1

1

1

0

0

1

1

1

1

1

1

Соответствующие схема из функциональных элементов представлены на рис.2.25.

Рис.2.25. Функциональная схема одноразрядного двоичного сумматора на три входа.

С ложение n-разрядных двоичных чисел можно осуществить, соединив n сумматоров таким образом, как это показано на рис.2.26.

В данной схеме сумматора первый элемент имеет два входа, а все остальные элементы - по три. Появление 1 на выходе yn+1 означает переполнение разрядной сетки, то есть попытка представить число, содержащее больше, чем n двоичных разрядов.

Рис.2.26. Схема n-разрядного двоичного сумматора.

В некоторых схемах сумматоров "замыкают" выход pn+1 последнего элемента на вход p1 первого. Тогда все элементы схемы сумматора будут иметь по три входа. Такое сложение называют циклическим. Оно находит свое применение при выполнении арифметических операций в ЭВМ.

Работа n-разрядного двоичного сумматора напоминает замóк типа "молния". Но есть существенная разность: замóк застегивается "шаг за шагом", последовательно. А сложение на двоичном сумматоре осуществляется "параллельно" за один шаг (такт), и выход полностью определяется текущим состоянием входов, независимо от их количества. То есть, если в момент времени t подать 2n сигналов на входы xn,xn-1, xn-2, … ,x2, x1 и yn,yn-1, yn-2,…,y2 ,y1, то n сигналов на выходах сумматора zn, zn-1, zn-2, … ,z2, z1 появятся в тот же момент времени, без задержки. Схемы из функциональных элементов называют поэтому комбинационными схемами, или схемами без памяти. Они не запоминают результатов своей предыдущей работы.

Естественно, вычислительные устройства должны обладать "памятью". Ее наличие даст возможность конструировать счетчики, арифметические регистры и различные "умные" схемы, которые выполнив одну интересную функцию, начинают выполнять другую, не менее интересную.

Такие схемы и способы их анализа и синтеза мы рассмотрим ниже.

Логические операции, выполняемые микропроцессором

Микропроцессор компьютера способен выполнять основные логические операции: конъюнкцию & (обозначение AND), дизъюнкцию (обозначение OR), отрицание (обозначение NOT), строгую дизъюнкцию (или сложение по модулю 2) (обозначение XOR).

Характеристики

Тип файла
Документ
Размер
2,27 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6372
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее