5100 (596808), страница 9

Файл №596808 5100 (Радиационная безопасность при эксплуатации и ремонте оборудования Курской АЭС) 9 страница5100 (596808) страница 92016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 9)

- мощности дозы в помещениях.

15.2 Причиной ухудшения радиационной обстановки могут служить:

  • дефекты оборудования КМПЦ, вследствие которых происходит выход теплоносителя за пределы контура МПЦ;

  • изменение технологического режима охлаждения активной зоны реактора;

  • перенос радиоактивных отложений из тупиковых и застойных зон КМПЦ в зоны производства работ;

  • вскрытие оборудования с целью ремонта;

  • извлечение из активной зоны реактора ОТВС, технологических каналов, датчиков контроля энерговыделения и т.д.

15.3 С целью исключения облучения персонала выше установленных пределов должен проводиться ежедневный инструктаж бригад перед допуском к работам по дозиметрическим нарядам в необслуживаемых помещениях и помещениях периодического пребывания.

15.4 При срабатывании сигнализации приборов радиационного контроля, а также прямопоказывающих дозиметров необходимо немедленно покинуть помещение и сообщить об ухудшении радиационной обстановки начальнику смены ОРБ.

15.5 Начальник смены ОРБ при поступлении предварительной информации об ухудшении радиационной обстановки в помещении ставит в известность начальника смены станции и начальника смены цеха-владельца помещения о запрете допуска персонала к ремонтным работам в помещении и организует радиационное обследование помещения с целью установления причин ухудшения радиационной обстановки.

15.6 По результатам радиационного обследования руководителем работ совместно с НС ОРБ принимается решение о продолжении работ в помещении. При невозможности проведения работ, исходя из разрешенных доз облучения, цех-владелец помещения организует проведение дезактивации помещения, скоростных промывок оборудования или экранирование «горячих» точек.

15.7 Участки помещений с «горячими» точками выгораживаются дозиметристом специальными барьерами, знаками радиационной опасности и предупреждающей лентой.

Решение о снятии барьеров и знаков принимает НС ОРБ только после проведения мер по улучшению радиационной обстановки и повторного радиационного обследования.

15.8 Для защиты персонала радиационно-опасные участки выгораживаются барьерами, лентами с указателями безопасных маршрутов движения персонала или безопасных направлений обхода. Запрещается самовольное пересечение границ участков, а также перенос знаков и барьеров. При необходимости по ГГС объявляется об обязательности применения дополнительных средств индивидуальной защиты.

15.9 Начальники смен цехов-владельцев помещений должны организовать допуск бригад на ремонтные работы так, чтобы при выполнении работ в одних помещениях исключалась возможность резкого ухудшения радиационной обстановки в других.

При выполнении операций, существенно влияющих на радиационную обстановку в помещении, все работающие в помещении где предполагается ухудшение радиационной обстановки должны быть выведены с рабочих мест.

Приложение А. Краткие сведения по ядерной физике и дозиметрии

1 Мельчайшими частицами вещества являются атомы, которые состоят из положительно заряженных ядер и движущихся вокруг них отрицательно заряженных электронов. В ядрах сосредоточена почти вся масса атома. Атомные ядра состоят из элементарных частиц двух видов: нейтронов и протонов, которые имеют почти одинаковую массу, равную одной атомной единице массы (1/12 массы изотопа углерода - 12). Масса электрона в 1836 раз меньше массы протона. Нейтрон не обладает электрическим зарядом, а протон обладает одним элементарным положительным зарядом, равным 4,8*10-10 единицы СГС=1,6*10-19 Кл (кулон) и равным по абсолютной величине отрицательному электрическому заряду электрона.

Размеры атомов и ядер очень малы: их радиусы составляют соответственно около 10-8 см и 10-13 см.

Положительный заряд ядра и порядковый номер химического элемента определяют числом протонов в ядре. В нейтральном атоме число протонов в ядре равно числу электронов, вращающихся вокруг ядра.

Вид атомов, характеризующийся массовым числом и атомным номером, называется нуклидом.

Нуклиды с одинаковым числом протонов, но разным числом нейтронов называются изотопами элемента.

Суммарное число протонов и нейтронов определяет атомный вес изотопа. Таким образом, изотопы - это нуклиды с одинаковыми порядковыми номерами, но разными атомными весами.

2 В природе встречаются как стабильные, так и нестабильные изотопы. Ядра нестабильных изотопов обладают способностью самопроизвольно превращаться в другие ядра или переходить из возбужденного состояния в нормальное. Эти процессы сопровождаются излучением альфа-частиц, бета-частиц, нейтронов и гамма-квантов.

Радиоактивность по своей природе может быть естественная и искусственная. Искусственная радиоактивность может быть наведенная и осколочная.

Естественные радиоактивные изотопы широко распространены в небольших концентрациях в воздухе, в горных породах и в воде.

Всего известно свыше 230 естественных радиоактивных изотопов.

Наиболее распространены радиоактивные изотопы урана, тория, радия, калия и ряда других элементов. Излучение естественных радиоактивных изотопов, содержащихся в горных породах и в воде, а также космическое излучение определяют радиационный фон местности, мощность излучения которого равна 40-200 нЗв/ч.

Наведенная радиоактивность возникает в результате взаимодействия ядер атомов с нейтронами. Для того чтобы была достаточно высокая вероятность такого взаимодействия, необходимы большие потоки нейтронов.

Образование радиоактивных изотопов происходит, в частности, в энергетических ядерных реакторах, где имеются большие плотности потоков нейтронов 1013 - 1016 нейтронов/(см2*с).

Примерами образования наведенной активности на Курской АЭС могут служить: активация аргона; активация кислорода - азотная радиоактивность; активация продуктов коррозии, содержащихся в теплоносителе и т.д.

Наиболее высокой наведенной радиоактивностью обладают оборудование и детали, находящиеся в работающем реакторе, их активность за счет активации атомов, входящих в состав материала из которого они изготовлены, может превышать допустимые уровни излучения в сотни и тысячи раз.

Осколочная радиоактивность - радиоактивность изотопов, образующихся в тепловыделяющих элементах в процессе деления ядерного горючего (урана-235 или плутония-239) в активной зоне реактора. При делении ядер урана-235 образуется более 200 радиоактивных изотопов, значительная часть которых находится в газообразном состоянии.

Осколочная радиоактивность является наиболее высокой и поэтому все операции с облученным ядерным топливом (ТВЭЛами) выполняются дистанционно. Наибольшую опасность представляют ТВЭЛы с разрушенными оболочками, так как при этом радиоактивные изотопы из ТВЭЛов могут попасть в производственные помещения и вызвать значительные загрязнения воздуха и поверхностей.

3 Альфа-частицы представляют собой ядра атомов гелия. Заряд альфа-частиц положительный и равен двум элементарным зарядам. Масса альфа-частиц равна четырем атомным единицам массы и приблизительно в 7000 раз больше массы электрона. При вылете альфа-частицы вес исходного ядра уменьшается на четыре единицы, а заряд на две единицы. Большая масса альфа-частиц определяет прямолинейную траекторию прохождения через электронные оболочки атомов, и только столкновение с ядром приводит к изменению направления движения альфа-частиц.

Кинетическая энергия альфа-частиц составляет несколько миллионов электрон-вольт (МэВ). Вся эта энергия затрачивается на ионизацию и возбуждение атомов вещества. Плотность ионизации очень высокая.

На всем пути пробега, который в воздухе составляет несколько сантиметров, альфа-частицы образуют до 106 пар ионов. В конце пробега альфа-частицы присоединяют два электрона и превращаются в атомы гелия.

В биологической ткани проникающая способность альфа-частиц незначительная и составляет несколько десятков микрон. Толщина поверхностного рогового слоя кожи практически поглощает все падающие на тело альфа-частицы. Тонкий лист бумаги или удаление от источника на расстоянии 10-15 см служат хорошей защитой от альфа-частиц. Однако, чрезвычайно опасно попадание альфа-активных веществ внутрь организма, так как слизистые оболочки внутренних органов очень тонкие и подвержены более сильному воздействию альфа-частиц, чем кожа.

4 Бета-частицы с отрицательным зарядом называются электронами, а с положительным - позитронами. При испускании электрона в ядре происходит превращение нейтрона в протон n = р + е-, а при испускании позитрона - протона в нейтрон р = n + е+. При этом не происходит изменения массового числа, а изменяется заряд ядра; в первом случае он увеличивается на единицу.

Бета-частицы обладают непрерывным энергетическим спектром. Максимальная энергия бета-частиц достигает несколько МэВ. При прохождении через вещество бета-частицы взаимодействуют с орбитальными электронами атомов и производят ионизацию или возбуждение. При этом происходит значительное рассеяние бета-частиц, так как масса их мала. Траектория бета-частиц представляет собой ломаную линию. Максимальные пробеги бета-частиц с энергией 1 МэВ составляют в воздухе около 4 м, в воде - 4,4 мм, в алюминии - 2 мм.

Для защиты от бета-излучения применяются только легкие материалы (алюминий, органическое стекло и др.), так как в случае применения тяжелых материалов возникает интенсивное тормозное (вторичное) рентгеновское излучение, которое обладает большой проникающей способностью.

5 Гамма-излучение представляет собой электромагнитное (фотонное) излучение, испускаемое при ядерных превращениях или при аннигиляции частиц. Энергия гамма-излучения (гамма-квантов) может достигать 10 МэВ и более. Характеристическое излучение - фотонное излучение с дискретным спектром, испускаемое при изменении энергетического состояния атома. Тормозное излучение - фотонное излучение с непрерывным спектром и испускаемое при изменении кинетической энергии заряженных частиц.

Рентгеновское излучение-совокупность тормозного и характеристического излучений, диапазон энергии фотонов которых составляет 1 кэВ – 1 МэВ.

При прохождении через вещество происходит как поглощение гамма-излучения (в результате фотоэлектрического поглощения (фотоэффект) и образования пар), так и рассеяние (комптоновское рассеяние).

Фотоэффект. Явление фотоэффекта заключается в вырывании электронов с одной из оболочек атома. На это тратится часть энергии гамма-квантов, а остальная часть передается электрону в виде кинетической энергии.

Образование пар. При взаимодействии гамма-квантов с энергией более 1,02 МэВ с полем ядра возможен процесс образования пары частиц: электрон и позитрон.

Комптоновское рассеяние не приводит к полному поглощению гамма-квантов. Гамма-квант в результате упругого взаимодействия с электроном передает часть энергии последнему и изменяет направление своего первоначального движения.

Вид взаимодействия гамма-квантов с веществом определяется их энергией. При малой энергии гамма-квантов основную роль играет фотоэффект. С увеличением энергии гамма-квантов возрастает доля комптоновского рассеяния, а с энергии 1,02 МэВ начинает расти доля процесса образования пар. Как правило, проникающая способность гамма-квантов возрастает с увеличением их энергии и уменьшением плотности вещества.

Для защиты от гамма-излучений наиболее часто применяются следующие материалы: свинец, свинцовое стекло, бетон, сталь, железо, вода и т.д.

Для быстрого расчета защиты от гамма-излучения можно использовать приближенное значение слоя половинного ослабления.

Так, например, для энергии гамма-квантов в 1 МэВ значения слоя половинного ослабления будут равны: свинец - 1,3 см; железо - 3,3 см; бетон - 12,9 см; вода - 28 см. При известной кратности ослабления (К) можно определить число слоев половинного ослабления (n) и, следовательно, толщину защиты по формуле: К=2n.

6 Нейтронное излучение возникает в результате ядерных реакций. Основными источниками нейтронов являются ядерные реакторы, где высокие потоки 1013-1016 нейтрон/(см2*с). Кроме этого, нейтроны получают при ядерных реакциях (типа альфа-частица, нейтрон) и (гамма-квант, нейтрон) в источниках, которые часто применяются для градуировки приборов. Распределение нейтронов на группы в зависимости от энергии приведено в таблице А.1.

Таблица А.1 - Распределение нейтронов по энергии

Группа нейтронов

Энергия нейтронов

тепловые

ниже кадмиевой границы (0,4 эВ)

промежуточные

выше кадмиевой границы и ниже 500 кэВ

Быстрые

выше 500 кэВ

В результате деления ядерного топлива образуются быстрые нейтроны, которые при взаимодействии с ядрами теряют энергию и превращаются сначала в промежуточные, затем в медленные и тепловые. При взаимодействии нейтронов с ядрами происходят приведенные ниже реакции.

6.1 Упругое рассеяние. Этот процесс аналогичен упругому столкновению двух шаров. Между нейтронами и ядрами происходит перераспределение кинетической энергии без изменения внутреннего состояния ядер.

6.2 Неупругое рассеяние. При этом процессе быстрые нейтроны передают часть своей кинетической энергии ядрам, которые переходят в возбужденное состояние. Переход ядер в основное состояние сопровождается испусканием вторичных гамма-квантов.

6.3 Радиационный захват. Ядро захватывает нейтрон и образуется новый изотоп, энергия возбуждения последнего высвечивается в виде гамма-квантов, которые покидают ядро практически одновременно с захватом нейтронов.

6.4 Активация. Ядро захватывает нейтрон и испускает другие частицы: протоны, альфа-частицы и др., которые могут покидать ядро по прошествии некоторого времени. Новый изотоп, образующийся в результате этих ядерных реакций, обладает радиоактивностью.

6.5 Деление. При поглощении ядрами тяжелых элементов (урана, плутония) нейтронов происходит процесс деления с образованием двух новых изотопов (осколков) и высвобождением в среднем около 2,5 новых нейтронов.

Вероятность того или иного указанного выше процесса взаимодействия определяется энергией нейтронов, атомным весом элементов и их ядерно-физическими свойствами (сечениями).

Характеристики

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6552
Авторов
на СтудИзбе
299
Средний доход
с одного платного файла
Обучение Подробнее