183614 (596692), страница 3
Текст из файла (страница 3)
(17)
(18)
Формулы (17) и (18) называются формулами Эрланга – основателя теории массового обслуживания.
Вероятность отказа в обслуживании заявки ротк равна вероятности того, что все каналы заняты, т.е. система находится в состоянии Sn. Таким образом,
(19)
Относительную пропускную способность СМО найдём из (8) и (19):
(20)
Абсолютную пропускную способность найдём из (9) и (20):
Среднее число занятых обслуживанием каналов можно найти по формуле (10), однако сделаем это проще. Так как каждый занятый канал в единицу времени обслуживает в среднем заявок, то
можно найти по формуле:
5.3 Одноканальная система массового обслуживания с ограниченной длиной очереди
В СМО с ограниченной очередью число мест m в очереди ограничено. Следовательно, заявка, поступившая в момент времени, когда все места в очереди заняты, отклоняется и покидает СМО. Граф такой СМО представлен на рисунке 5.
S0
Рисунок 5 – Граф состояний одноканальной СМО с ограниченной очередью
Состояния СМО представляются следующим образом:
S0 – канал обслуживания свободен,
S1 – канал обслуживания занят, но очереди нет,
S2 – канал обслуживания занят, в очереди одна заявка,
Sk+1 – канал обслуживания занят, в очереди k заявок,
Sm+1 – канал обслуживания занят, все m мест в очереди заняты.
Для получения необходимых формул можно воспользоваться тем обстоятельством, что СМО на рисунок 5 является частным случаем системы рождения и гибели, представленной на рисунке 2, если в последней принять и
(21)
(22)
(23)
Выражения для финальных вероятностей состояний рассматриваемой СМО можно найти из (4) и (5) с учётом (21). В результате получим:
При р = 1 формулы (22), (23) принимают вид
При m = 0 (очереди нет) формулы (22), (23) переходят в формулы (14) и (15) для одноканальной СМО с отказами.
Поступившая в СМО заявка получает отказ в обслуживании, если СМО находится в состоянии Sm+1, т.е. вероятность отказа в обслуживании заявки равна:
Относительная пропускная способность СМО равна:
Абсолютная пропускная способность равна:
Среднее число заявок, стоящих в очереди Lоч, находится по формуле
и может быть записано в виде:
(24)
При формула (24) принимает вид:
– среднее число заявок, находящихся в СМО, находится по формуле(10)
и может быть записано в виде:
(25)
При , из (25) получим:
Среднее время пребывания заявки в СМО и в очереди находится по формулам (12) и (13) соответственно.
5.4 Одноканальная система массового обслуживания с неограниченной очередью
Примером такой СМО может служить директор предприятия, вынужденный рано или поздно решать вопросы, относящиеся к его компетенции, или, например, очередь в булочной с одним кассиром. Граф такой СМО изображён на рисунке 6.
Рисунок 6 – Граф состояний одноканальной СМО с неограниченной очередью
Все характеристики такой СМО можно получить из формул предыдущего раздела, полагая в них . При этом необходимо различать два существенно разных случая: а)
; б)
. В первом случае, как это видно из формул (22), (23), р0 = 0 и pk = 0 (при всех конечных значениях k). Это означает, что при
очередь неограниченно возрастает, т.е. этот случай практического интереса не представляет.
Рассмотрим случай, когда . Формулы (22) и (23) при этом запишутся в виде:
Поскольку в СМО отсутствует ограничение на длину очереди, то любая заявка может быть обслужена, т.е. относительная пропускная способность равна:
Абсолютная пропускная способность равна:
Среднее число заявок в очереди получим из формулы (24) при :
Среднее число обслуживаемых заявок есть:
Среднее число заявок, находящихся в СМО:
Среднее время пребывания заявки в СМО и в очереди определяются формулами (12) и (13).
5.5 Многоканальная система массового обслуживания с ограниченной очередью
Пусть на вход СМО, имеющей каналов обслуживания, поступает пуассоновский поток заявок с интенсивностью
. Интенсивность обслуживания заявки каждым каналом равна
, а максимальное число мест в очереди равно
.
Граф такой системы представлен на рисунке 7.
Рисунок 7 – Граф состояний многоканальной СМО с ограниченной очередью
– все каналы свободны, очереди нет;
– заняты l каналов (l = 1, n), очереди нет;
- заняты все n каналов, в очереди находится i заявок (i = 1, m).
Сравнение графов на рисунке 2 и рисунке 7 показывает, что последняя система является частным случаем системы рождения и гибели, если в ней сделать следующие замены (левые обозначения относятся к системе рождения и гибели):
Выражения для финальных вероятностей легко найти из формул (4) и (5). В результате получим:
(26)
Образование очереди происходит, когда в момент поступления в СМО очередной заявки все каналы заняты, т.е. в системе находятся либо n, либо (n+1),…, либо (n + m – 1) заявок. Т.к. эти события несовместны, то вероятность образования очереди pоч равна сумме соответствующих вероятностей :
(27)
Отказ в обслуживании заявки происходит, когда все m мест в очереди заняты, т.е.:
Относительная пропускная способность равна:
Абсолютная пропускная способность:
Среднее число заявок, находящихся в очереди, определяется по формуле (11) и может быть записано в виде:
(28)
Среднее число заявок, обслуживаемых в СМО, может быть записано в виде:
Среднее число заявок, находящихся в СМО:
Среднее время пребывания заявки в СМО и в очереди определяется формулами (12) и (13).
5.6 Многоканальная система массового обслуживания с неограниченной очередью
Граф такой СМО изображен на рисунке 8 и получается из графа на рисунке 7 при .
Рисунок 8 – Граф состояний многоканальной СМО с неограниченной очередью
Формулы для финальных вероятностей можно получить из формул для n-канальной СМО с ограниченной очередью при . При этом следует иметь в виду, что при
вероятность р0 = р1=…= pn = 0, т.е. очередь неограниченно возрастает. Следовательно, этот случай практического интереса не представляет и ниже рассматривается лишь случай
. При
из (26) получим:
Формулы для остальных вероятностей имеют тот же вид, что и для СМО с ограниченной очередью:
Из (27) получим выражение для вероятности образования очереди заявок:
Поскольку очередь не ограничена, то вероятность отказа в обслуживании заявки:
Относительная пропускная способность:
Абсолютная пропускная способность:
Из формулы (28) при получим выражение для среднего числа заявок в очереди:
Среднее число обслуживаемых заявок определяется формулой:
Среднее время пребывания в СМО и в очереди определяется формулами (12) и (13).
5.7 Многоканальная система массового обслуживания с ограниченной очередью и ограниченным временем ожидания в очереди
Отличие такой СМО от СМО, рассмотренной в подразделе 5.5, состоит в том, что время ожидания обслуживания, когда заявка находится в очереди, считается случайной величиной, распределённой по показательному закону с параметром , где
– среднее время ожидания заявки в очереди, а
– имеет смысл интенсивности потока ухода заявок из очереди. Граф такой СМО изображён на рисунке 9.
Рисунок 9 – Граф многоканальной СМО с ограниченной очередью и ограниченным временем ожидания в очереди
Остальные обозначения имеют здесь тот же смысл, что и в подразделе.
Сравнение графов на рис. 3 и 9 показывает, что последняя система является частным случаем системы рождения и гибели, если в ней сделать следующие замены (левые обозначения относятся к системе рождения и гибели):
(29)
Выражения для финальных вероятностей легко найти из формул (4) и (5) с учетом (29). В результате получим:
,
где . Вероятность образования очереди определяется формулой:
Отказ в обслуживании заявки происходит, когда все m мест в очереди заняты, т.е. вероятность отказа в обслуживании:
Относительная пропускная способность:
Абсолютная пропускная способность:
Среднее число заявок, находящихся в очереди, находится по формуле (11) и равно:
Среднее число заявок, обслуживаемых в СМО, находится по формуле (10) и равно:
Среднее время пребывания заявки в СМО складывается из среднего времени ожидания в очереди и среднего времени обслуживания заявки:
6. Метод Монте-Карло
6.1 Основная идея метода
Сущность метода Монте-Карло состоит в следующем: требуется найти значение а некоторой изучаемой величины. Для этого выбирают такую случайную величину Х, математическое ожидание которой равно а: М(Х)=а.
Практически же поступают так: производят n испытаний, в результате которых получают n возможных значений Х; вычисляют их среднее арифметическое и принимают
в качестве оценки (приближённого значения) a* искомого числа a: