178587 (596306), страница 4

Файл №596306 178587 (Разработка инвестиционного проекта ОАО "Завод по производству труб большого диаметра") 4 страница178587 (596306) страница 42016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

2(NPV) = E[NPV-E(NPV)2]

2(NPV) = E[((α*S1 + α2*S2 + … +αn*Sn)-( α*E(S1) + α2*E(S2) + … +αn*E(Sn)))2], (5)

где Si - случайная величина денежного потока, денежные единицы;

α - коэффициент дисконтирования, доли единицы

E[..] – операция вычисления математического ожидания.

Приведем формулу (5) к следующему виду

2(NPV) = E[(α *(S1 - E(S1)) + α2*(S2 - E(S2)) +… +αn*(Sn - E(Sn)))2], (6)

После преобразований, автор получает следующее выражение:

(7)

где Vt - вариация (риск) проекта в момент времени t, (денежные единицы)2

n - число планово-учетных периодов проекта,

m - размер матрицы ковариаций, денежные единицы,

i,j - номер планово-учетного периода

Sij - чистые денежные потоки, денежные единицы,

2(Si) - дисперсия случайной величины денежных потоков, (денежные единицы)2,

Cov(Si,Sj) - ковариация между величинами Si и Sj, (денежные единицы)2,

- коэффициент дисконтирования, доли единицы.

Критерием покрытия автор называет соотношение стоимости собственного капитала субъекта в момент времени t к заемному


(8)

где Сt - критерий покрытия в момент времени t, доли единицы,

Аt - собственный капитал субъекта в момент времени t, денежные единицы,

Zt - заемный капитал в момент времени t, денежные единицы.

В случае, когда критерий покрытия меньше единицы, риск проекта резко возрастает, превышая допустимые значения. Формализация данного критерия возможно через лимитирование данного отношения. Норма лимита должна определяться экспертным путем.

Критерием, наиболее точно оценивающим стоимость инвестиционного проекта в любой учетный период, является чистый приведенный эффект. Автор предполагает, что критерий ликвидность стратегического инвестиционного проекта необходимо оценивать как отношение чистого приведенного эффекта стратегического инвестиционного проекта на один из планово-учетных периодов (кроме начального) к чистому приведенному эффекту стратегического инвестиционного проекта на начальном этапе. Этим мы получаем сверку фактических данных с прогнозируемыми. Формула для оценки ликвидности стратегического инвестиционного проекта приведена ниже


(9)

где Rt - коэффициент ликвидности в момент времени t, доли единицы,

Sij - чистые денежные потоки в i,j-й планово-учетный период, денежные единицы,

- безрисковая ставка дисконтирования, доли единицы,

n - число планово-учетных периодов проекта,

i - номер планово-учетных периодов,

j - номер планово-учетного периода на момент реализации стратегического инвестиционного проекта,

NPVt - фактически полученная стоимость стратегического инвестиционного проекта (денежные потоки, полученные на момент времени t), денежные единицы,

I - первоначальные капиталовложения, денежные единицы.

Ясно, что Ri - случайная величина, ее реализации составляют значения коэффициента ликвидности стратегического инвестиционного проекта за плановый период.

Четвертым основным критерием стратегического инвестиционного проекта в условиях риска является стратегическая значимость. Формализация этого критерия возможна лишь при учете целей конкретного проекта.

Для рассматриваемого в работе проекта автор формирует критерий стратегической значимости для субъекта и дополняет им приведенную выше модель


(10)

к - размерность вектора Pf(t), единицы,

f - число ресурсов в "портфеле ресурсов", единицы,

t - номер планово-учетных периода,

Pf - цена на f-й ресурс, денежные единицы,

Ptkrit - критический лимит цены на f-й ресурс, денежные единицы,

Vn - коэффициент ковариации Pf и Pt, (денежные единицы)2,

xf - доля f-го ресурса в "портфеле ресурсов", доли единицы.

1.5.8 Метод нечетко-множественной оценки инвестиционного проекта

Зададим набор нечетких чисел = (amin, , amax) для анализа эффективности проекта (эти числа моделируют высказывание следующего вида: "параметр А приблизительно равен и однозначно находится в диапазоне [amin, amax]".):

  • = (Imin, , Imax) - инвестор не может точно оценить, каким объемом инвестиционных ресурсов он будет располагать на момент принятия решения;

  • = (ri min, , ri max) - инвестор не может точно оценить стоимость капитала, используемого в проекте (например, соотношение собственных и заемных средств, а также процент по долгосрочным кредитам);

  • = (Vmin, , Vmax) - инвестор прогнозирует диапазон изменения денежных результатов реализации проекта с учетом возможных колебаний цен на реализуемую продукцию, стоимости потребляемых ресурсов, условий налогообложения, влияния других факторов;

  • = (Gmin, , Gmax) - инвестор нечетко представляет себе критерий, по которому проект может быть признан эффективным, или не до конца отдает себе отчет в том, что можно будет понимать под "эффективностью" на момент завершения инвестиционного процесса.

В том случае, если какой-либо из параметров однозначно задан, то нечеткое число вырождается в действительное число А с выполнением условия amin = = amax. При этом существо метода остается неизменным.

Чтобы преобразовать формулу (4) к виду, пригодному для использования нечетких исходных данных, воспользуемся способом, предложенным автором в /6/.

Зададимся фиксированным уровнем принадлежности и определим соответствующие ему интервалы достоверности по двум нечетким числам и : [a1, a2] и [b1, b2], соответственно. Тогда основные операции с нечеткими числами сводятся к операциям с их интервалами достоверности. А операции с интервалами, в свою очередь, выражаются через операции с действительными числами - границами интервалов:

  • операция "сложения"

[a1, a2] (+) [b1, b2] = [a1 + b1, a2 + b2], (11)

  • операция "вычитания"

[a1, a2] (-) [b1, b2] = [a1 - b2, a2 - b1], (12)

  • операция "умножения"

[a1, a2] () [b1, b2] = [min(a1b1, a1b2, a2b1, a2b2 ), max(a1b1, a1b2, a2b1, a2b2 )], (13)

  • операция "деления"

[a1, a2] (/) [b1, b2] = [a1, a2] () [1/b2, 1/b1] (14)

  • операция "возведения в степень"

[a1, a2] (^) i = [a1i , a2i]. (15)



По каждому нечеткому числу в структуре исходных данных получаем интервалы достоверности [I1, I2], [ri1, ri2], [Vi1, Vi2]. И тогда, для заданного уровня , путем подстановки соответствующих границ интервалов в (4) по правилам (11) - (15), получаем

(16)

Далее, задавшись приемлемым уровнем дискретизации по на интервале принадлежности [0, 1], автор в /6/ приводит функцию принадлежности результирующего нечеткого числа к треугольному виду, ограничиваясь расчетами по значимым точкам нечетких чисел исходных данных.

Далее, исходя из функций принадлежности и конкретизируя определенный уровень принадлежности , автор строит зону неэффективных инвестиций и вычисляет площади ( ) этой плоской фигуры в зависимости от интервальных значений чистой приведенной стоимости (NPV1, NPV2 ) и критерия эффекта (G1, G2).

После чего, предположив, что все реализации (NPV, G) при заданном уровне принадлежности равновозможны, автор выводит степень риска неэффективности проекта () через геометрическую вероятность события попадания точки (NPV, G) в зону неэффективных инвестиций

(17)

Тогда итоговое значение степени риска неэффективности проекта он получает из уравнения (18)

(18)

В /6/ он рассматривает частный случай, когда ограничение определено четко уровнем G. С учетом формулы (18) и длинной цепи преобразований, автор получает меру оценки степени риска инвестиционных проектов, которая выглядит так

, (19)

где

, (20)

(21)

Таким образом, степень риска V&M принимает значения от нуля до единицы. Каждый инвестор, исходя из своих инвестиционных предпочтений, может классифицировать значения V&M, выделив для себя отрезок неприемлемых значений риска.

В /15/ автор рассматривает полученную оценку степени риска для различных способов представлений чистого приведенного эффекта.

Результат для случая, когда критерий G представлен нечетким числом произвольного вида, представлен автором в /16/.

В работе В.В.Каблукова /2/ рассмотрена оценка риска, на основе вероятностного подхода. Риск оценивается при помощи системы критериев: критерия неопределенности, ликвидности и покрытия. Критерий неопределенности представляет собой дисперсию значений чистого приведенного эффекта. Для его расчета необходим довольно большой объем информации о входных данных, включающий в себя и распределение вероятностей, и информацию о корреляционной зависимости. Распределение задается, исходя из предположений экспертов, и несет в себе большую долю субъективизма, а для получения информации о корреляционной зависимости требует трудоемких дополнительных исследований. Выходными данными этой модели являются три критерия, значения которых необходимо сравнить между собой для получения ответа на вопрос об общем уровне риска проекта.

Метод оценки риска, разработанный Недосекиным А.О. /6/, опирается на теорию нечетких множеств. Все данные представлены нечеткими числами, а риск рассматривается как вероятность попадания значения чистого приведенного эффекта в зону неэффективных инвестиций. Чем больше эта вероятность тем, соответственно, больше риск. Это действительно так, но оценка риска может получиться односторонней, если в процессе инвестирования не учитывать во сколько раз значение заемных средств превышает собственные, а также проводить сопоставления полученных в ходе реализации проекта результаты с прогнозными.

Разработка модели, учитывающей все недостатки данных методов, является целью этой работы. Необходимо создать модель оценки уровня риска проекта, которая не опиралась бы на характер распределений входных данных, их зависимость друг от друга и учитывала бы неопределенность с различных сторон. Помимо этого модель должна давать однозначный ответ о уровне риска проекта вне зависимости от того сколько в нее входит критериев оценки.

2 Специальная часть



2.1 Описание модели оценки риска инвестиционного проекта для ОАО «Завод по производству труб большого диаметра» на основе модели риска стратегического инвестиционного проекта



Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6510
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее