175950 (596119), страница 5
Текст из файла (страница 5)
Из матрицы видно, что факторы Y, X1, X2 сильно коррелируют между собой. Фактор X3 слабо влияет на все остальные, поэтому его сразу можно исключить.
Оставляем факторы Y и X1.
Также для сравнения рассчитаем подобную корелляционую матрицу, но через относительные поазатели.
год | Всего безработных, Y | мужчин, Х1 | женщин, Х2 | Время, X3=t |
1995 | 8,81165 | 8,193124 | 8,03786623 | 0 |
1996 | 8,81463 | 8,205765 | 8,02943284 | 0,69314718 |
1997 | 8,99442 | 8,382747 | 8,2125684 | 1,09861229 |
1998 | 9,09403 | 8,474703 | 8,32117831 | 1,38629436 |
1999 | 9,11537 | 8,47658 | 8,36474107 | 1,60943791 |
2000 | 8,85352 | 8,237744 | 8,07682603 | 1,79175947 |
2001 | 8,74878 | 8,134761 | 7,9700493 | 1,94591015 |
2002 | 8,74321 | 8,127109 | 7,9665867 | 2,07944154 |
2003 | 8,69131 | 8,054523 | 7,93844555 | 2,19722458 |
2004 | 8,71866 | 8,031385 | 8,01961279 | 2,30258509 |
| Y | X1 | X2 | X3 |
Y | 1,00 | 0,99 | 0,99 | -0,29 |
X1 | 0,99 | 1,00 | 0,95 | -0,35 |
X2 | 0,99 | 0,95 | 1,00 | -0,21 |
X3 | -0,29 | -0,35 | -0,21 | 1,00 |
Зависимость коэффициентов уменьшилась по сравнению с предыдущей матрицей, но общая зависимость факторов практически не изменилась.
Прежде чем начать анализ, построим график зависимости Y и X1, а также проведем тренд:
Из графика видно, что между экономическими явлениями существует нелинейное соотношение. Таким образом она выражена с помощью нелинейной регрессии, следующим полиномом:
y = a + b*x + c*x2
Для нашей параболы второй степени заменяем переменные x=x1, x2=x2, и получаем двухмерное уравнение линейной регрессии:
y = a + b*x1 + c*x2
Для оценки параметров линейной множественной регрессии используем метод наименьших квадратов (МНК). При его применении строится система нормальных уравнений, решение которой и позволяет получить оценки параметров регрессии.
Согласно МНК неизвестные параметры a,b и c получают таким образом, чтобы сумма квадратов отклонений фактических значений y от значений yр, найденных по уравнению регрессии, была минимальной:
Чтобы найти минимум функции, надо вычислить частные производные по каждому из параметров a,b и c и приравнять их к нулю, тогда:
В результате преобразования получим следующую систему нормальных уравнений для оценки параметров a, b и с:
t | y | x1 | y*x1 | (x1)^2 | x1*x2 | (x1)^4 | (x1^2)*Y |
1 | 6712 | 3616 | 24270592 | 13075456 | 47280848896 | 170967549607936 | 87762460672 |
2 | 6732 | 3662 | 24652584 | 13410244 | 49108313528 | 179834644139536 | 90277762608 |
3 | 8058 | 4371 | 35221518 | 19105641 | 83510756811 | 365025518020881 | 153953255178 |
4 | 8902 | 4792 | 42658384 | 22963264 | 110039961088 | 527311493533696 | 204418976128 |
5 | 9094 | 4801 | 43660294 | 23049601 | 110661134401 | 531284106259201 | 209613071494 |
6 | 6999 | 3781 | 26463219 | 14295961 | 54053028541 | 204374500913521 | 100057431039 |
7 | 6303 | 3411 | 21499533 | 11634921 | 39686715531 | 135371386676241 | 73334907063 |
8 | 6268 | 3385 | 21217180 | 11458225 | 38786091625 | 131290920150625 | 71820154300 |
9 | 5951 | 3148 | 18733748 | 9909904 | 31196377792 | 98206197289216 | 58973838704 |
10 | 6116 | 3076 | 18812816 | 9461776 | 29104422976 | 89525205074176 | 57868222016 |
Сумма | 71135 | 38043 | 277189868 | 148364993 | 593427651189 | 2433191521665030 | 1108080079202 |
Получим систему:
yр = 6368,97 - 1,34665*x + 0,0004x2
Посчитаем Yр. Сумма полученных отклонений расчетных значений от фактических должна быть равна 0.
x1 | y(р) | Y | y-y(р) | (x1)^2 | ||
3616 | 6670,61 | 6712 | 41,39 | 45050944 | ||
3662 | 6741,07 | 6732 | -9,07 | 45319824 | ||
4371 | 8038,73 | 8058 | 19,27 | 64931364 | ||
4792 | 8997,42 | 8902 | -95,42 | 79245604 | ||
4801 | 9019,45 | 9094 | 74,55 | 82700836 | ||
3781 | 6931,10 | 6999 | 67,90 | 48986001 | ||
3411 | 6376,96 | 6303 | -73,96 | 39727809 | ||
3385 | 6342,10 | 6268 | -74,10 | 39287824 | ||
3148 | 6048,92 | 5951 | -97,92 | 35414401 | ||
3076 | 5968,65 | 6116 | 147,35 | 37405456 | ||
Сумма полученных отклонений | 0,000 |
3.2 Прогнозирование одномерного временного ряда
Важное место в математически-статистическом исследовании занимает прогнозирование.
Прогноз, или предвидение - неотъемлемая составляющая всей человеческой деятельности, в том числе и экономический. Это промежуточное звено между познанием объективной реальности и деятельности людей по ее преобразованию. Создание методов прогнозирования – одна из главных проблем науки и, может быть, труднейшая из них.
Важно сказать то, что чтобы знать какого уровня достигнет тот или иной процесс, нужно знать параметры тренда. Безусловно прогноз может быть ошибочным, поскольку то или иной объект имеет возможность изменить скорость движения процесса. Таким образом одна из ролей прогноза - он выступает как предостерегающий фактор.
В экономическом исследовании особое внимание уделяется тренду (“тенденции развития”). При разработке модели тренд оказывается основой прогнозируемого временного ряда, на который накладываются другие составляющие. Модели тренда могут различаться по виду. Их выбор в каждом конкретном случае осуществляется в соответствии с рядом статистических критериев. Наибольшее распространение в практических исследованиях получили следующие функции: линейная, квадратическая, степенная, показательная, экспоненциальная, логистическая. В данном анализе мы применяем полиномиальную во второй степени функцию тренда.