168811 (595697), страница 4
Текст из файла (страница 4)
7. Виробництво амофосу (цех СФД) проектною потужністю 190000 т/рік. Введено в дію в 1975 році. Засноване на взаємодії фосфорної кислоти з аміаком.
В зв’язку з відсутністю сировини – фосфорної кислоти виробництво було перепрофільоване на виробництво складних мінеральних добрив: вапняно-аміачної селітри (ВАС), потужністю 400 тис. т. в рік На час перевірки виробництво не працювало через неврегульованість збуту продукції.
8. Виробництво циклогексанолу – циклогексанону (цех АК-1). Введено в дію в 1984 році, проектна потужність – 25000 т/рік. Стадії виробничого процесу:
– стадія 100 – гідрування бензолу, отримання циклогексану;
– стадія 200 – окислення циклогексану до циклогексанолу – циклогексанону сирцю;
– стадія 300 – очищення та розділення продуктів стадії 200.
Під час перевірки виробництво стояло через відсутність сировини.
9. Виробництво адипінової кислоти (цех АК-2) Введено в дію 1984 році. Проектна потужність – 25000 т/рік. Основні стадії виробництва:
– окислення суміші циклогексанолу та циклогексанону азотною кислотою в присутності міді до отримання суміші органічних кислот;
– виділення адипінової кислоти із розчину шляхом кристалізації;
– очищення адипінової кислоти перекристалізацією із розчину в знесоленій воді;
– виділення адипінової кислоти методом фугування і сушіння в «киплячому шарі».
Під час перевірки виробництво стояло через відсутність сировини.
10. Цех АК – 5.
Цех призначено для знешкодження відходів виробництва циклогексанолу – циклогексанону, адипінової кислоти: водне кислих, водно-лужних стоків, фракцій: гептанової, спиртової, X – масел, віддувних газів стадій 100, нітрозних газів цеху АК-2. При термічному розкладі рідких відходів отримують 10% розчин кальцинованої соди, який використовується в технології цеху АК-2, для нейтралізації стічних вод. Цех не працював через простій цехів АК-1, АК-2.
11. Асфальтобетонна установка. Введено в 1992 році. Стадії виробництва: плавлення бітуму, нанесення бітуму на гравій та сушіння бітумно-гравійної суміші. Виробництво сезонне.
12. Ремонтні та допоміжні цехи.
13. Виробництво теплової енергії (ПКЦ) В складі – З котлоагрегати К-50–40 продуктивністю до 42 Гкал/год, 4 котлоагрегати БКЗ-75–390Б продуктивністю до 90 Гкал/год та 1 котлоагрегат для підігріву теплофікаційної води ТХ-ПВ-1. Введено в дію: К-50–40 в 1969 році, інші – в 1983,1988 рр. Під час перевірки в роботі бу 1 котлоагрегат К-50–40.
14. Водозабезпечення (цехи ВІК та ХПВ)
15. Виробництво очищених НДК.
Нижчі дикарбовані кислоти – суміш, в основному адипінової, глутарової та янтарної кислот, що являються відходами виробництва адипінової кислоти, забруднені смолами та солями міді і ванадію.
Установка очищення НДК проектною потужністю 2700 т/рік працює на базі обладнання цеху солі АГ. Задіяна в 1998 р. Передбачена можливість роботи установки як на готовому розчині НДК з виробництва адипінової кислоти, так і на сухій суміші НДК. Проектом передбачено випуск продуктів марки «А» і «Б» (відповідно збагачених адипіновою (до 80%) та глутаровою кислотами) з використанням вузлів перекристалізації, сушіння в киплячому шарі, центрифугування.
Стадії процесу:
– розчинення НДК (прийом готового розчину);
– висадження основної кількості міді щавлевою кислотою (оксалату міді) і фільтрація розчину НДК на прес-фільтрі;
– очищення розчину НДК від смоли на вугільному фільтрі;
– очищення розчину НДК від міді та ванадію на катіонітовому фільтрі;
-
кристалізація очищених НДК на апараті ПТ і затарювання лускованих НДК в біг-беги.
При виробництві аміаку утворюються відходи кубових залишків перегонки моноетаноламіну (МЕА). Кубові залишки перегонки МЕА – густа темна рідина. За хімічним складом являє собою розчин у воді моноетаноламіну та смоли – продукту окислення моноетаноламіну. Концентрація моноетаноламіну біля 15%, смоли до 37%. За токсичними властивостями кубові залишки перегонки моноетаноламіну віднесені до ІІ класу небезпеки. На час перевірки, за вісім місяців 2005 року, утворено 17,0 тонни кубових залишків МЕА. Для складування кубових залишків МЕА передбачено місце в шостій секції накопичувача токсичних відходів. До 2000 року кубові залишки МЕА частково відвантажувались для потреб малого підприємства «БМБ» м. Чернігів, як нестандартні мастила. З 2000 року по 1.09.2005 р. реалізації цього відходу не було.
Крім вищезгаданого, на підприємстві в цехах аміаку, неконцентрованої азотної кислоти, циклогексанолу утворюється група каталізаторів, які складаються з металів, або окислів металів (міді, нікелю, заліза, хрому). На підприємстві з метою дотримання норм екологічної безпеки при поводженні з відпрацьованими каталізаторами, видано наказ №328 від 31.07.98 р. «Поводження з відпрацьованими каталізаторами». До наказу додається інструкція «Про порядок здачі відпрацьованих каталізаторів на тимчасове зберігання». Згідно наказу в цехах де використовуються каталізатори, після їх вивантаження з апаратів проводиться аналітичний контроль якісного складу. Після отримання довідки про якісний склад відпрацьованого каталізатору проводиться його зважування і затарювання у спеціальну тару та відправлення його на тимчасове зберігання у вантажний цех к. 149. При цьому проводиться оформлення відповідних документів бухгалтерської звітності.
В атмосферне повітря надходить такі забруднюючі речовини, як оксид вуглецю, оксид азоту, моноетаноламіну, аміаку.
Таблиця 2.1. Характеристика джерел викидів забруднюючих речовин
Найменування джерела викиду | Висота джерела викиду, м | Діаметр джерела викиду, м | Обєм | Швидкість | Темпе рату ра | Код | Найменування | Вихідні дані величини вики ду г/с |
Димососи | 30 | 1,5 | 39,97 | 22,63 | 200 | 301 | Оксид азоту | 80,94 |
30 | 1,5 | 39,97 | 22,63 | 200 | 337 | Оксид вуглецю | 42,05 | |
30 | 1,5 | 39,97 | 22,63 | 200 | 1852 | Моноетаноламін | 0,45 | |
30 | 1,5 | 39,97 | 22,63 | 200 | 303 | Аміак | 0,73 |
-
Загальна характеристика цеху
Сировиною для виробництва аміаку є природний газ. В зв’язку з світовими тенденціями значного підвищення цін на енергоносії, сучасні технології виробництва аміаку направлені на зниження електроспоживання, покращення утилізації тепла, мінімізації втрат тепла димових газів, і зменшення енергоспоживання на очистку синтез-газу від двухоксиду вуглецю.
Для досягнення вищезазначеного, фірмою ХальдерТопсе А/О (Данія) впроваджена високоефективна енергозберігаюча технологія виробництва аміаку. Яка включає наступні основні стадії:
очистку природного газу від сірчистих сполук;
первинний і вторинний рифорімормінг;
двухстадійна конверсія СО;
МДЕА очистка синтез-газу від СО2;
метанування;
компресія;
компресія синтез-газу;
цикл синтезу S-300;
мембранне відокремлення водню;
виділення аміаку.
Схема традиційна, але вона має сучасне апаратурне оформлення з використанням нових каталізаторів.
Так, у відділенні риформінгу, печі первинного риформінгу обладнані боковим обігрівом, що забезпечує можливість оптимального регулювання температурного профілю стінок труб риформінгу. Горілки розташовані вздовж бокової стінки печі без примусової подачі, і працюють на природному газі і відхідних газах; зменшився розмір печі майже на 50% без зменшення надійності агрегату. Одночасно, завдячуючи введенню нових каталізаторів, значно зниженій їх об’єм, що дало змогу зменшити об’єм реакторів на всій установці.
Відділення наступні за риформінгом також значно удосконалені з метою енергозбереження. Для оптимізації роботи відділення очистки від СО2 необхідно експлуатувати агрегати при зменшеному співвідношенні пар/газ. Для цього були розроблені і впроваджені нові більш активні каталізатори високотемпературної конверсії СО, більш стійкі при експлуатації з низьким співвідношенням пар/сухий газ і мінімальною здатністю до утворення вуглеводнів. Крім цього зменшення співвідношення пар/газ добре поєднується з аМДEA очисткою від СО2, яка являє собою комбінацією фізичного і хімічного виділення СО2 і використовує лише тепло технологічного газу.
Відділення очистки від СО2 включає адсорбер, регенератор високого і низького тиску, в яких більша частина СО2 виділяється за рахунок зміни тиску. Після відділення очистки від СО2 залишкові сліди СО і СО2 видаляються з синтез-газу в реакторі метанування перед компремуванням газу в компресорі синтез-газу до тиску циклу синтезі.
Цикл синтезу аміаку експлуатується при тиску 190 кг/см2 з використанням колони синтезу S-300 з трьома радіальними каталізаторними полицями, які оптимізовані для максимального використання всього об’єму каталізатора.
Тепло реакції синтезу аміаку використовується для виробництва пари високого тиску в котлі-утилізаторі і підігрівачі котлової води. Конденсація товарного аміаку проходить частково в водяному холодильнику і, кінцевою, в аміачному випарнику.
В мембранній установці виділення водню більша частина водню виділяється з продувочних газів і подається в лінію синтез-газу. Відхідні гази мембранного відділення використовуються в якості палива для печі первинного риформінгу.
Система пари основана на виробництві пари високого тиску (115 кг/см2, 510°С). Виробництво пари високого тиску визначає енергетичну ефективність агрегату аміаку. Приводи всіх основних компресорів – парові турбіни. Турбіни компресорів синтез-газу, охолодження аміаку, компресорів природного газу працюють на парі високого тиску. В якості привода компресора технологічного повітря використовується конденсаційна турбіна, яка працює на парі середнього тиску, пар низького тиску направляється в колектор пари низького тиску.
Для підвищення загальної ефективності роботи агрегатів аміаку компанією «Uhde» (Німеччина) в традиційну схему установки аміаку впроваджені наступні модифікації:
зміщення частини реакції риформінга з печі первинного риформінга в сторону реактора вторинного риформінга. Це результат включення в технологічну схему стадії утилізації випускного газу. Таким чином, водень повертається в сторону всмоктування компресору синтез-газу, піч вторинного риформінгу працює з надлишком повітря і співвідношенням водень-азот в живильному газі підтримується на рівні, близькому до 3:1;
підігрів технологічно повітря для реактору вторинного риформінгу до більш високої температури (540°С). Зміщення частини реакції в сторону реактору вторинного риформінгу дозволяє зменшити температуру в печі первинного риформінгу і економії палива;
Оптимальне використання зменшеного навантаження печі первинного риформінгу, що досягається за рахунок підвищення тиску в печі до 40 бар. При цьому загальне енергоспоживання ще зменшується, тому що споживача потужність компресорів зменшується;
Підігрів суміші сировина/пар до більш високої температури, завдяки чому зменшується споживання палива печі первинного риформінгу і теплопередача здійснюється в конвекційній зоні;
Зменшення співвідношення пар: вуглець до 3.0, яке достатнє для попередження відкладень вуглецю на каталізаторі первинного риформінгу. Якщо до сировини додається менше пари, то в радіальній зоні печі абсорбується менше тепла завдяки чому зменшується витрата палива.
Стосовно апаратурного оформлення, то в агрегатах аміаку компанії «Uhde» використовуються печі первинного риформінгу з холодною вихідною колекторною системою в яких: топка знаходиться зверху що дозволяє досягнути максимально рівномірного температурного профілю стінок реакційних труб; менша кількість горілок в порівнянні з печами риформінгу бокової топки та ряд інших.
Для очистки синтез-газу від СО2 використовується активний аМДЕА – водний розчин н-метилдіетаноламіна з спеціальним активатором. Дана технологія забезпечує найменше енергоспоживання завдяки тому, що розчин регенерується миттєвим випарюванням, а не відпарюванням.
Схема включає двухступеневий абсорбер. Основна частина СО2 видаляється в нижній частині абсорбера за допомогою напівслабкого розчину, який регенерується в двухступеневому випарнику миттєвого скипання, тобто без споживання енергії на відпарювання. Кінцева очистка здійснюється в верхній частині абсорбера за допомогою відносно малої кількості циркулюючого розчинника, який потім термічно регенерується відпарюванням в рибойлерній колоні.
Дана технологія має ряд переваг:
висока ступінь очистки від СО2 (> 99% об)