151740 (594705), страница 2

Файл №594705 151740 (Электромагнитные волны в волноводном тракте) 2 страница151740 (594705) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

1.1 Волновой процесс

Термины «волна», «волновой процесс», употребляемые в физике и технике, получили широкое распространение. Под распространением волны понимается постепенное вовлечение среды в некоторый физический процесс, приводящее к передаче энергии в пространстве.

Пусть в какой-то области пространства наблюдается физический процесс, который в точке можно охарактеризовать функцией

. В другой точке

измерения величины

в это же время, быть может, покажут отсутствие процесса

. Но через какое-то время он будет передан средой, и мы отметим, что

В простейшем случае будет обнаружено лишь запаздывание процесса во времени, т. е. , где

— время, требуемое для прохождения пути

со скоростью

. Пусть в пространстве существует зависимость только от одной координаты

. Характеризующая процесс функция

(1.1)

построена при и при

. Очевидно,

.

Говорят, что функция (1.1) описывает волну. Иногда волны этого рода называют «недеформируемыми»; имеется в виду, что временной закон во всех точках пространства — с точностью до сдвига — одинаков. Волна называется плоской и однородной. Дело в том, что, положив

, мы задаем плоскость, на которой мгновенное значение функции

постоянно. Любую такую плоскость называют фронтом волны. В некоторый момент

фронт, для которого

движется вдоль оси

со скоростью

,

. Плоскую однородную волну, распространяющуюся в противоположном направлении, следует описывать при помощи выражения (1.1) с изменением знака

(1.1а)

Обратимся к однородному волновому уравнению

(1.2)

Если пользоваться декартовой системой координат и рассматривать только процессы, не зависящие от

и

, то волновое уравнение примет вид

(1.3)

Путем непосредственной подстановки нетрудно убедиться, что функции, выражаемые формулами (1.1) и (1.1а), являются решениями одномерного волнового уравнения (1.3).

Общее решение уравнения (1.3) выражает формула

(1.4)

где и

— произвольные дважды дифференцируемые функции. Это наложение двух плоских однородных недеформируемых: волн, распространяющихся в противоположных направлениях.

1.2 Гармонические волны

Если в (1.1) взять такую функцию , что

то в каждой точке пространства процесс будет иметь характер гармонических колебаний

или

(1.5)

Такого рода плоская однородная волна называется гармонической, а введенный параметр — волновым числом.

Как видно, полная фаза гармонических колебании в пространстве при заданном

убывает пропорционально

; значения функции

при этом периодически повторяются. Пространственный период называют длиной волны. Очевидно, для произвольного

должно быть

. Поэтому из (1.5) следует, что

, т. е.

(1.6)

а также

(1.7)

где —частота процесса.

Чтобы составить, более наглядное представление о гармонической волне, положим сначала и получим

т.е. функцию, характеризующую распределение величины

вдоль оси

в начальный момент

. Эта косинусоида (кривая на рис. 1.2а) представляет собой как бы «мгновенный снимок» процесса. Выберем следующий фиксированный момент

и для него запишем

где то есть не что иное, как расстояние, пройденное волной за истекшее время

. «Мгновенный снимок», соответствующий моменту

, дает, таким образом, косинусоиду, смещенную по оси

на расстояние

(кривая 2 на рис. 1.2а). Итак, распространение гармонической волны — это движение косинусоидального распределения и вдоль прямой с постоянной скоростью.

Плоская однородная гармоническая волна выражается одним из частных решений одномерного волнового уравнения (1.3). Метод комплексных амплитуд приводит (1.3) к виду

(1.8)

Это не что иное, как одномерная форма уравнения Гельмгольца. Его общее решение можно выразить следующей суммой:

(1.9)

( и

—комплексные константы:

и

).

Рисунок 1.2

Умножая комплексную амплитуду на

и отделяя вещественную часть, находим

(1.10)

Это наложение двух гармонических волн, распространяющихся в противоположных направлениях. Гармоническая волна, движущаяся вдоль оси , возникает как частное решение при

.

В качестве другого частного решения рассмотрим наложение бегущих навстречу волн с одинаковыми амплитудами и начальными фазами

. При этом из (1.10) получаем

(1.11)

Такой процесс называется стоячей волной. Его отличительной особенностью является синфазность колебаний. Действительно, в каждой области постоянства знака множителя фаза зависит только от времени (это величина

или

). В зависимости от

косинусоидального изменяется амплитуда гармонических колебаний

. Ряд «мгновенных снимков» процесса для разных моментов времени дает картину, показанную на рис. 1.2б; косинусоидальное распределение и вдоль оси

не движется (в отличие от бегущей волны), а испытывает «пульсации». При этом расстояния между соседними неподвижными нулями (узлами) равны

; таковы же и расстояния между соседними максимумами (пучностями).

1.3 Поляризация и наложение волн

Для описания ориентации волны, распространяющейся в заданном направлении, существует понятие поляризации. Плоскостью поляризации называют плоскость, проходящую через направление распространения и параллельную вектору . Таким образом, всякое наложение двух волн с произвольными амплитудами и фазами есть также некоторая электромагнитная волна. Любая из плоскостей, проходящих через ось

, может в равной мере быть плоскостью поляризации.

Существенно, что при распространении волны плоскость ее поляризации может и не оставаться неподвижной, т. е. волна может изменять свою ориентацию относительно направления распространения. Действительно, рассмотрим электрические поля двух ортогонально поляризованных волн одного направления и составим их наложение

(1.22)

Если фазы волн совпадают ( и

), то, как легко убедиться, наложение волн есть волна, поляризованная в неподвижной плоскости, составляющей угол

с плоскостью поляризации первой волны. Это плоская, или линейная, поляризация.

Картина оказывается иной, если фазы налагающихся волн различны. Пусть, например, при одинаковых амплитудах ( ) фазовое различие составляет

. Полагая в (1.22)

и

, определим вектор

как

(1.23)

Определяя угол , указывающий положение плоскости поляризации волны, имеем

(1.24)

т. е. угол наклона вектора к оси

не остается постоянным в пространстве и времени, а равен

. Как видно, в каждой фиксированной плоскости

вектор

вращается с угловой скоростью

, а в фиксированный момент времени

распределение поля вдоль оси таково, что конец вектора

«скользит по винтовой линии». Это волна круговой поляризации, точнее, левой круговой поляризации. Правая круговая поляризация соответствует случаю

и

(вращение в противоположном направлении).

Если налагаемые волны имеют произвольные амплитуды и фазы, то результирующий волновой процесс есть волна эллиптической поляризации. Вращаясь, вектор при этом изменяется по величине и описывает эллипс. Ориентация и эксцентриситет эллипса определяются соотношением комплексных чисел

и

.

Наложение противоположно направленных волн одинаковых амплитуд вызывает процесс, называемый стоячей волной. Особенностью электромагнитной стоячей волны является характерное пространственное и фазовое смещение распределений и

.

Рассмотрим, например, стоячую волну, поляризованную в плоскости , Положив

и

находим

(1.25)

или, переходя от комплексных амплитуд к векторам поля в случае идеального диэлектрика ( ,

):

(1.26)

Узлы (или пучности) стоячих волн векторов и

сдвинуты на четверть волны. Во времени же эти поля смещены на

по фазе. Такая стоячая волна в среднем не переносит энергии, как легко убедиться, вычисляя среднюю величину вектора Пойнтинга.

2. Резонансы и направляемые волны в плоских системах

2.1 Плоский резонатор

Распределение поля, возникающее в идеальном диэлектрике при нормальном падении волны на идеально проводящую плоскость, стоячая волна обладает тем свойством, что в любой плоскости, расположенной на расстоянии

от границы раздела сред, выполняется условие

. Следовательно любую из таких плоскостей можно заменить границей с идеальным проводником, так что в «отсеченном» диэлектрическом слое сможет существовать прежнее поле.

Рассмотрим теперь плоский диэлектрический слой между двумя идеально проводящими плоскостями, расположенными на некотором фиксированном расстоянии . Из предыдущего следует, что необходимым условием существования поля в данной системе является кратность величины

половине длины волны в диэлектрике. Запишем это в двух формах:

,

Характеристики

Тип файла
Документ
Размер
10,23 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6390
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее