151328 (594682), страница 9
Текст из файла (страница 9)
Прямого и непрямого действия.
Клапаны прямого действия бывают с нагружением затвора грузом, пружинной и рычажной – грузовой системой. Эти клапана открываются с силой создаваемой давлением рабочей среды и приложенной непосредственно к тарелке затвора. С ростом давления сверху установленной нормы сила, действующая на тарелку снизу превышает усилия уравновешивающего устройства и открывает затвор. Рабочая среда при этом уходит из защищаемого объекта и давление в нем снижается до безопасной величины.
Клапаны непрямого действия применяются при большом номинальном расходе пара и высоких его параметрах, входят в состав импульсно предохранительных устройств.
В защищаемой системе при повышении давления пара выше допустимого открываются импульсно – предохранительный клапан. В следствии превышения усилия под тарелкой от воздействия перепадов давления над усилием, воздействующим на тарелку через исток со стороны груза. Пар из импульсно – предохранительного клапана через соединительный трубопровод опадает в надпоршневое пространство сервопривода главного предохранительного клапана. Так как площадь поршня превышает площадь тарелки, на которую постоянно воздействует давление пара и осуществляет закрытие клапана, возникает перестоновочное усилие, направленное в сторону открытия клапана, и главный предохранительный клапан открывается. При понижении давления до заданной величины, определяемого настройкой импульсно предохранительного клапана последний закрывается. Давление над поршнем главного предохранительного клапана падает и под воздействием перепада давления пара на тарелку и пружину он закрывается.
Каждый котел паропроизводительностью более 100 кг/ч должен быть снабжен не менее чем двумя предохранительными клапанами, один из которых должен быть контрольным. Суммарная пропускная способность предохранительных клапанов, устанавливаемых на котел, должна быть не менее часовой производительности котлов.
7.3 Охрана окружающей среды
7.3.1 Мероприятия по охране воздушного бассейна
В целях снижения выбросов вредных веществ в атмосферу на АТЭЦ – 2 предусмотрены эффективные золоулавливающие установки – скрубберы с вертикальными трубами Вентури (МВ-ВТИ) с интенсивным орошением труб Вентури водой.
Дымовые газы от котлов выбрасываются через две дымовые трубы высотой Н=129 м , диаметром устья Dу=6 метров(1 труба), и диаметром устья Dу=6.6 м (2труба). К трубе №1 подключены котлы 1-4, к трубе №2 подключены котлы 5-7.
Контроль за выбросами вредных веществ на АТЭЦ-2 осуществляется расчетным путем ежемесячно. Концентрация в дымовых газах Nох и Со2 определяется химическим путем.
Таблица 7.3.1 - Предельно-допустимые концентрации вредных веществ
Диоксид ванадия | Оксид азота | Диоксид азота | Пятиокись ванадия | Оксид углерода |
NO2 | NO | SO2 | V2O5 | CO |
0.085 | 0.4 | 0.5 | 0.002 | 5.0 |
7.4 Расчет выбросов и их рассеивание в атмосфере от котлов ТЭЦ
Расчет производим по методическому указанию Сулеева Н.Г. и Кибарина А.А., Расчет рассеивания вредных выбросов в атмосферу для тепловых электростанций и котельных на ПЭВМ: Методические указания к выполнению дипломного проекта, Алматы, АЭИ, 1995
7.4.1 Выброс золы
МТВ=0,01*В*(аУН*АР+q4УН* )*(1-)
МТВ=0,01*140000*(0,95*38,0+1,5* )*(1–0,97)=1548,905 г/с
АР=38,0 %-зольность топлива на рабочую массу,
q4УН=1,5 % -потеря теплоты от механического недожога топлива
аУН=0,95–доля частиц уносимая из топки,
=0,97–КПД золоуловителя с трубой Вентури,
В = В*8=17,5*8=140 кг/с=140000 г/с – расход натурального топлива;
7.4.2 Выброс сернистого ангидрида
МSO 2=0.02*B*SP*(1-SO 2)*(1–SO 2)
МSO 2=0.02*140000*0.9*(1–0.2)*(1–0.02)=1975.68 г/с
В=140000 г/с–расход натурального топлива,
SP=0,9 %-содержание серы в топливе на рабочую массу,
SO 2=0,2 – доля сернистого ангидрида, улавливаемого летучей золой в газоходах котла, (для топок с твердым шлакоудалением),
SO 2= 0,02 – доля сернистого ангидрида, улавливаемого в мокрых золоуловителях, (щелочность воды 7,5 мг-экв/л).
7.4.3 Количество выбросов оксидов азота
МNO x=0.34*10-7*K*B*QHP*(1– )*(1-1*r)*1*2*3*E2
МNOx=0.34*10-7*140000*7.355*16965*(1– )*(1–0)*0.83*1*1*1 =487.332 г/с
- коэффициент, характеризующий выход оксидов азота на 1т сожжённого топлива, кг/т, D=420 т/ч –номинальный,
DФ=380 т/ч–фактический
1=0,178+0,47*1,5=0,833–безразмерный коэффициент, учитывающий
влияние на выход оксидов азота качества сжигаемого угля.
Исходная формула 1 =0,178*0,47*NГ, где NГ=1,5 %.
2 – коэффициент учитывающий конструкцию горелок (для вихревых горелок БКЗ–420 2=1)
3 – коэффициент учитывающий вид шлакоудаления (т.к. шлакоудаление твердое , то 3=1). На котле БКЗ–420–140 отсутствует рециркуляция воздуха, следовательно ε1–коэффициент рециркуляции, равен нулю. Кроме того нет и подачи части воздуха помимо основных горелок, т.е. ε2=1–коэффициент характеризующий снижение выбросов оксидов азота при двухступенчатом сжигании топлива.
7.4.4 Выбросы диоксида азота рассчитываются по формуле
МNO 2=0,8*МNO x=0,8*487,332=389,86 г/с
МNO =0,13*МNO x=0,13*487,332=63,35 г/с
7.4.5 Количество выбросов оксидов ванадия
Выбросы происходят только при растопке котла для поддержания постоянства величины факела. Для растопки 1-го котла предусмотрены 6 механических мазутных форсунок, производительностью по 0,8 т/ч.
В=6*0,8=0,48 т/ч=1333 г/с
Мазут используемый на ТЭЦ–2 Шымкентского и Атырауского нефтеперегонных заводов – SP = 2 %.
содержание оксидов ванадия в жидком топливе в пересчёте на V2O5 г/т.
ОС – коэффициент оседания V2O5 на поверхностях КА, причём котлы у нас с промежуточным перегревом,
ОС – доля твёрдых частиц продуктов сгорания мазута улавливаемых в устройствах для очистки газов мазутных котлов0.
7.4.6 Определение минимальной высоты трубы
где М=МSO 2+5.88*389.86=4268.057 г/с
А=200 – коэффициент зависящий от температурной стратификации атмосферы из.
VГ = 1248 м3/с – объём дымовых газов на АТЭЦ–2 (из годового отчета по станции) при расходе топлива на один котёл В=72 т/ч.
Объем дымовых газов на одну трубу:
F = 2 – коэффициент скорости оседания вредных веществ в атмосферном воздухе, при среднем эксплуатационном коэффициенте очистки выбросов не менее 90 %.
Т=ТУХ–ТЛЕТСР.МАКС=99,7 0С – разность температур выбрасываемых из котла газов и средней максимальной температуры наружного воздуха наиболее жаркого месяца года в 13.00 часов дня (принимается по СНиП 2.01.01.- 82 «Строительная климатология и геофизика ».
= 1 – безразмерный коэффициент, учитывающий влияние рельефа местности, в данном случае ровная и слабопересечённая местность.
СФ–фоновая концентрация вредных веществ, характеризующая загрязнение атмосферы, создаваемое другими источниками. (принимаем в виду отсутствия данных).
При принятой ориентировочно высоте трубы определяются безразмерные коэффициенты m и n, учитывающие условия выхода дымовых газов из трубы. Значение коэффициентов m и n определяются в зависимости от параметров:
Откуда :
при m2 n=1.
ПДК СSO2=0.5мг/м3 из
Диаметр устья дымовой трубы:
W0=35 м/с–скорость выхода дымовых газов.
7.4.7 Расчёт максимальной концентрации вредных веществ
В связи с пролётом самолётов над АТЭЦ–2 на низкой высоте, высота дымовых труб занижена. Действительная высота дымовых труб 129 м.
От этой производной начнём определение максимальных концентраций вредных веществ.
Величина максимальной приземной концентрации вредных веществ:
Отсюда видно, что величина концентрации при высоте трубы 129 м превышает допустимые.
7.4.8 Определение расстояния от дымовой трубы, на котором достигается максимальное значение концентрации вредных веществ
m=d*
7.4.9 Определение концентрации вредных веществ в атмосфере по оси факела выброса на различных расстояниях от дымовой трубы
При опасной скорости ветра Um приземная концентрация вредных веществ Ci (мг/м3) на различных расстояниях (м) от источника выброса определяется по формуле:
Ci=Si*CM
где Si–безразмерный коэффициент, определяемый в зависимости от отношения и коэффициента F по формулам:
S1=
При =1000 м, и =
S1=
При =3000 м, и =
S1=
При =5000 м, и =2,228, S1=0,687
При =7000 м, и =3,119, S1=0,499
При =10000 м, и =4,455, S1=0,316
При =2244,407м, и =1, S1=1
По результатам расчётов составим сводную таблицу 7.4.9:
Сi, мг/м3 | Хi , м | |||||
1000 | 2244,407 | 3000 | 5000 | 7000 | 10000 | |
CSO 2 +NO 2 | 1,069 | 1,78 | 1,632 | 1,223 | 0,888 | 0,562 |
CЗОЛ(ТВ) | 0,389 | 0,647 | 0,593 | 0,444 | 0,323 | 0,204 |
CSO 2 | 0,496 | 0,825 | 0,756 | 0,567 | 0,412 | 0,2607 |
CNO x | 0,123 | 0,204 | 0,187 | 0,140 | 0,102 | 0,064 |
Н а основании данной таблицы построим графики:
7.5 Определение границ санитарной защитной зоны
где L0 (м) – расчётный размер участка местности в данном направлении, где концентрация вредных веществ ( с учётом фоновой концентрации от других источников ) превышает ПДК .
P (%) – среднегодовая повторяемость направления ветров рассматриваемого румба.
P0 (%) - повторяемость направления ветров одного румба при годовой розе ветров.
l0 (м) – размер С З З установленный в санитарных нормах проектирования промышленных предприятий .
Среднегодовая роза ветров характеризуемая значениями Р для разных румбов принимается по данным методических указаний «Основы экологии»:
Характеристики | Направления ветров | |||||||
С | СВ | В | ЮВ | Ю | ЮЗ | З | СЗ | |
Повторяемость направлений Р (%) | 9 | 12 | 7 | 23 | 16 | 20 | 7 | 6 |
Повторяемость напр.ветров Одного направления румба Или круговой розе ветров Р0 (%) | 12,5 | |||||||
Отношение Р/Р0 | 0,72 | 0,96 | 0,56 | 1,84 | 1,28 | 1,6 | 0,56 | 0,48 |
Величина С З З L0 ,м | 1000 | |||||||
l = L0 *P/Р0 ,м | 720 | 960 | 560 | 1840 | 1280 | 1600 | 560 | 480 |
По данным таблицы строим план санитарно-защитной зоны