150645 (594567), страница 11
Текст из файла (страница 11)
где N=350 кВт – мощность насоса согласно таблице 6;
=0,87 – К.П.Д. насоса по таблице 6;
к=1,1 – коэффициент запаса согласно [11];
выбираем электродвигатель АВ-450-750 номинальной мощностью Рном=450 кВт, напряжением U=6 кВ, частота вращения n=750 об/мин, =0,97, соs=0,91.
4.2.2 Мощность электродвигателя привода насоса обессоленной воды Ро
где N=342 кВт – мощность насоса согласно таблице 6;
=0,76 – К.П.Д. насоса по таблице 6;
к=1,1 – коэффициент запаса согласно [11];
выбираем электродвигатель АВ-500-1000 номинальной мощностью Рном=500 кВт, напряжением U=6 кВ, частота вращения n=1000 об/мин, =0,94, соs=0,87.
4.2.3 Мощность электродвигателя насоса конденсата греющего пара Рк.г.п.
где N=100 кВт – мощность насоса согласно таблице 6;
=0,75 – К.П.Д. насоса по таблице 6;
к=1,2 – коэффициент запаса согласно [11];
выбираем электродвигатель АО3-400s-4 номинальной мощностью Рном=200 кВт, напряжением U=6 кВ, частота вращения n=1500 об/мин, =0,93, соs=0,9.
4
.2.4 Мощность электродвигателя насоса исходной воды Ри.в.
где N=260 кВт – мощность насоса согласно таблице 6;
=0,86 – К.П.Д. насоса по таблице 6;
к=1,1 – коэффициент запаса согласно [11];
выбираем электродвигатель 4АН355М номинальной мощностью Рном=400 кВт, напряжением U=6 кВ, частота вращения n=1500 об/мин, =0,86, соs=0,92.
4.2.5 Мощность электродвигателя привода вакуум-насоса ВВН1-12 Рв1
где N=12,5 кВт – мощность вакуум-насоса согласно таблице 6;
=0,75 – К.П.Д. насоса по таблице 6;
к=1,3 – коэффициент запаса согласно [11];
выбираем электродвигатель 4А180S-2 номинальной мощностью Рном=22 кВт, напряжением U=380 В, частота вращения n=1500 об/мин, =0,89, соs=0,91.
4.2.5 Мощность электродвигателя привода вакуум-насоса ВВН1-25 Рв2 находим аналогично
где N=20 кВт – мощность вакуум-насоса согласно таблице 6;
=0,75 – К.П.Д. насоса по таблице 6;
к=1,3 – коэффициент запаса согласно [11];
выбираем электродвигатель 4А200L-4 номинальной мощностью Рном=45 кВт, напряжением U=380 В, частота вращения n=1500 об/мин, =0,92, соs=0,9.
4.2.6 Полученные результаты сводим в таблицу 7.
Таблица 7 – Номинальные характеристики электродвигателей приводов насосного оборудования
| Тип электродвигателя | Номинальная мощность Р, кВт | Номинальное напряжение U, В | Частота вращения n, 1/мин | К.П.Д. | Cos | Количество |
| АВ-450-750 | 450 | 6000 | 750 | 0,97 | 0,91 | 3 |
| АВ-500-1000 | 500 | 6000 | 1000 | 0,94 | 0,87 | 1 |
| АО3-400S-4 | 200 | 6000 | 1500 | 0,93 | 0,9 | 1 |
| 4АН355М | 400 | 6000 | 1500 | 0,86 | 0,92 | 1 |
| 4А180S-2 | 22 | 380 | 1500 | 0,89 | 0,91 | 2 |
| 4А200L-4 | 45 | 380 | 1500 | 0,92 | 0,9 | 1 |
4.3 Расчёт электрических нагрузок
4.3.1 Рассчитываем нагрузки электрооборудования на стороне низшего напряжения
4.3.1.1 Расчётная активная мощность электродвигателей 0,38 кВ Рд.расч составляет по формуле (4.19) [10]
Рд.расч.=КиРном=0,8(222+45)=71,2 кВт,
где Ки=0,8 – коэффициент использования мощности насосов по таблице 4.6 [10];
Рном – суммарная номинальная мощность двигателей по таблице 7.
4.3.1.2 Расчётная реактивная мощность электродвигателей 0,38 кВ Qд.расч. составляет по формуле (4.19) [10]
Q д.расч.=Рд.расч.tg =71,20,75=53,4 квар,
где tg=tg(arccos)=0,75 – значение коэффициента мощности насосов по таблице 4.6 [10].
4.3.1.3 Расчётная активная мощность трёх сварочных трансформаторов составляет Рсв.тр.
Рсв.тр.=КиРномn=0,35303=31,5 кВт,
где Ки=0,35 – коэффициент использования мощности сварочных трансформаторов по таблице 4.6 [10].
4.3.1.4 Расчётная реактивная мощность сварочных трансформаторов составляет Qсв.тр.
Qсв.тр.=Рсв.тр.tg=31,51,73=54,6 квар,
где tg=1,73 – определяется для коэффициента мощности сварочных трансформаторов по таблице 4.6 [10].
4.3.1.5 Расчётную мощность освещения Ро находим из условия 10 Вт/м2 площади помещений
Ро=10SКи=107200,8=5,76 кВт,
где S=720 м2 – площадь помещений проектируемой установки;
Ки=0,8 коэффициент использования мощности освещения согласно [10].
4.3.1.6 Суммарная активная мощность на стороне НН составляет РНН
РНН=Рд.расч.+Рсв.тр.+Ро=71,2+31,5+5,76=108,5 кВт.
4.3.1.6 Суммарная реактивная мощность QНН
QНН=Qд.расч.+Qсв.тр.=53,4+54,6=108 квар.
4.3.1.7 Так как величина реактивной мощности значительна на стороне низшего напряжения подключаем компенсирующее устройство УКМ 58-04-100-33,3 УЗ мощностью Qкк= 100 квар (номинальное напряжение 0,4 кВ).
4.3.1.8 Тогда величина реактивной мощности с компенсирующим устройством QННк
QННк=QНН-Qкк=108-100=8 квар.
4.3.1.9 Полная мощность на стороне низшего напряжения SНН
4.3.1.10 По мощности выбираем по таблице на стр. 207 [25] масляный силовой трансформатор ТМ 160 со следующими характеристиками:
напряжение на шинах высшего напряжения – 6 кВ;
напряжение на шинах низшего напряжения – 0,4 кВ;
номинальные потери холостого хода Рх.х.=510 Вт;
номинальные потери короткого замыкания Рк.з.=3,1 кВт;
uк =4,5 %;
i0=2,4 %.
4.3.1.11 Потери в трансформаторе принимаем согласно (4.29) и (4.30)
Рт=0,02Sном=0,02160=3,2 кВт;
Qт=0,1Sном=0,1160=16квар.
4.3.1.12 Всего на стороне высшего напряжения имеем
РВН=РНН+Рт=108,5+3,2=111,7 кВт;
QВН=QНН+Qт=8+16=24 квар.
4
.3.1.13 Полная мощность на стороне высшего напряжения трансформатора SВНт
4.3.1.14 Средневзвешенный коэффициент мощности cos
сos=РВН/SВНт=111,7/114,3=0,98.
4.3.2 Расчётные нагрузки высоковольтного оборудования
4.3.2.1 Принимая коэффициент использования мощности одинаковым для всех электродвигателей находим активную расчётную мощность Рд.расчв по формуле (4.19) [10]
Рд.расчв=КиРном=0,8(4503+500+200+400)=1960 кВт,
где Рном – сумма номинальных мощностей двигателей по таблице 7;
Ки=0,8 – коэффициент использования по таблице 4.6 [10].
4.3.2.2 Реактивная мощность составляет Qд.расч.в
Qд.расч.в=tgРд.расч.в=0,751960=1470 квар,
где tg=0,75 – определяется по таблице 4.6 [10].
4.3.3 Суммарная активная мощность на шинах 6 кВ составляет Р
Р=РВН+Рд.расч.в=111,7+1960=2071,7 кВт.
4.3.4 Суммарная реактивная мощность на шинах 6 кВ составляет Q
Q= QВН+Qд.расч.=24+1470=1494 квар.
4.3.5 Устанавливаем на шинах высшего напряжения компенсирующее устройство УКА 56-6,3-1350 УЗ (У1) мощностью Qкк=1350 квар (номинальное напряжение 6,3 кВ).
4.3.6 С учётом компенсирующего устройства величина реактивной мощности на шинах 6 кВ составляет Qк
Qк=Q-Qкк=1464-1350=144 квар.
4.3.7 Полная мощность на шинах 6 кВ составляет S
4.4 Выбор коммутирующей аппаратуры и сечения кабелей
4.4.1 Распределительный шкаф 6 кВ подключается к цеховым шинам алюминиевым кабелем, проложенным в земле
4.4.1.1 Расчётный ток в линии от шин 6 кВ до РШ определяется по величине полной мощности на шинах 6 кВ Iр1
4.4.1.2 По таблице 5-16 [10] выбираем для алюминиевого кабеля в бумажной пропитанной изоляции экономическую плотность тока jэк=1,2 А/мм2
-
Тогда экономическое сечение жилы кабеля sэк
sэк=Iр1/jэк=200/1,2=167 мм2.
4.4.1.4 Выбираем по таблице 2-22 [26] кабель с алюминиевыми жилами марки ААШВ-6 с сечением жилы s=185 мм2 и длительно допустимым током Iд.д.1=340 А.
4.4.2 Трансформатор мощности подключён к распределительному щиту 6 кВ кабелем с алюминиевыми жилами, проложенным по воздуху
4.4.2.1 Расчётный ток в линии от РШ 6 кВ до трансформатора определяется по величине мощности на шинах высшего напряжения трансформатора Iр2
4.4.2.2 По таблице 5-9 [10] выбираем для алюминиевого кабеля с бумажной изоляцией экономическую плотность тока jэк=1,2 А/мм2
-
Тогда экономическое сечение жилы кабеля sэк
sэк=Iр2/jэк=11/1,2=9,1 мм2.
4.4.2.4 Выбираем по таблице 2-22 [26] кабель с алюминиевыми жилами марки ААШВ-6 с сечением жилы s=10 мм2 и длительно допустимым током Iд.д.2=60 А.
4.4.3 Распределительный шит 0,4 кВ подсоединён к трансформатору алюминиевыми проводами с резиновой изоляцией, проложенными в трубе
4.4.3.1 Расчётный ток в проводах Iр3 находим по величине полной мощности на стороне низшего напряжения трансформатора
4.4.3.2 Для алюминиевых проводов с резиновой изоляцией экономическая плотность тока составляет по таблице 5-16 [10] jэк=1,2 А/мм2.
4.4.3.3 Экономическое сечение провода составляет sэк
sэк=Iр3/jэк=157/1,2=131 мм2
4.4.3.4 Выбираем по таблице 2-17 [26] алюминиевый провод марки АПР с сечением жилы s=120 мм2 и длительно допустимым током Iд.д.2=220 А.
4.4.4 Принимая, что двигатели подключены к РШ 0,4 кВ алюминиевыми проводами в резиновой изоляции проложенными в одной трубе, выберем сечение проводов для двигателя Рном=45 кВт
4.4.4.1 Расчётный ток в проводах Iр.д. найдём по номинальным характеристикам двигателя
4.4.4.2 Экономическая плотность тока по таблице 5-16 [10] jэк=1,2А/мм2.
4.4.4.3 Экономическое сечение провода sэк
sэк=Iр.д./jэк=82,6/1,2=68,8 мм2.
4.4.4.4 По таблице 2-17 [26] выбираем алюминиевый провод с резиновой изоляцией марки АПР сечением жилы s=70 мм2 и длительно допустимым током Iд.д.=165 А.
4.4.5 По расчётному току в проводниках выбираем отключающую аппаратуру
4.4.5.1 По расчётному току в кабельной линии 6 кВ, соединяющей внутрицеховые шины с РШ проектируемой установки, Iр1=200 А выбираем высоковольтный выключатель марки ВМП 10 (таблица на стр. 222 [25]) номинальным током Iном=1000 А.
4.4.5.2 Двигатели 6 кВ подключаются непосредственно к РШ марки К-2-АЭ, в котором устанавливаются вакуумные выключатели типа BB/TEL со следующими характеристиками:
номинальный ток – 630 А;
номинальный ток отключения выключателя – 12,5 кА;
номинальный ток термической стойкости (0,3 с.) - 12,5 кА.
В дальнейших расчётах оборудование и токопроводы высоковольтного оборудования не рассматриваются.












