150396 (594547), страница 4

Файл №594547 150396 (Исследование физических явлений в диэлектрических жидкостях инициируемых лазерным излучением) 4 страница150396 (594547) страница 42016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

При отсутствии столкновений, при =0, электрон колеблется с амплитудами скорости u= и смешения . Столкновения мешают электрону приобрести полный размах колебаний, так как каждый раз. "недобрав" полные амплитуды u и , электрон резко меняет направление своего движения и начинает раскачиваться заново. Поэтому амплитуды скорости и смешения при увеличении частоты столкновений уменьшаются.

За одну секунду поле совершает над электроном работу

;

где знаком обозначено усреднение по времени, то есть за период колебаний. Эта работа идет на увеличение кинетической энергии электрона , в основном энергии его хаотического движения, которая скоро становится гораздо больше энергии колебательного движения . Проделывая с помощью формулы (5) для операцию усреднения, найдем скорость набора энергии в осциллирующем поле

, (5)

где - среднеквадратичное электрическое поле в волне.

Рассматривая процесс набора энергии электроном в поле световой волны с квантовых позиций (электрон поглощает и вынужденно испускает световые кванты при столкновениях с атомами), можно показать, что средняя скорость набора энергии в поле фотонов выражается той же формулой (6). где поле Е связано с плотностью потока фотонов F естественным соотношением . Формула оказывается справедливой не при жестком условии, что среднее приобретение энергии при столкновении , а при более мягком условии, что сама средняя энергия . Но средняя энергия электронного спектра при пробое сравнима с потенциалом ионизации, иначе ионизационный процесс не мог бы протекать столь быстро. Потенциал ионизации составляет, как мы видели, много квантов, поэтому неравенство в самом деле можно считать выполненным [2].

Поле связано с интенсивностью соотношением

, В/см (6).


Скорость дрейфа электронов приблизительно равняется:

,

; (7)

где - подвижность связана с коэффициентом диффузии электронов соотношением.

3.2 Модель келдыша – файсала – риса

Исходная модель Келдыша. Цель этого раздела состоит в аналитическом приближенном решении нестационарного уравнения Шредингера, описывающего поведение атомарной системы во внешнем электромагнитном поле:

, (8)

Здесь - невозмущенный гамильтониан атомарной системы, а величина представляет собой потенциал взаимодействия атомарной системы с внешним электромагнитным полем. Предполагаются известными собственные функции и собственные значения энергии стационарного гамильтониана:

, (9)

Точное выражение для амплитуды перехода из начального связанного состояния атома или атомарного иона i в конечное состояние непрерывного спектра f под действием поля лазерного излучения имеет следующий вид ( напомним, что всюду используется атомная система единиц, в которой постоянная Планка, масса электрона и его заряд предполагаются равными единице):

, (10)

Здесь конечное состояние описывается точной волновой функцией . Выражение (10) эквивалентно исходному нестационарному уравнению Шредингера (8).Вероятность связанно-свободного перехода за время t дается квадратом модуля выражения (10).

Начальное состояние дискретного спектра атома в (10) является невозмущенным и берется из решения уравнения (9).Взаимодействие атома с электронным полем бралось Келдышем в дипольном приближении (так как размеры атома малы по сравнению с длиной волны электромагнитного излучения), используя так называемую калибровку «длины»

, (11)

Здесь F – вектор напряженности электромагнитного поля электромагнитной волны. Предполагалось, что это поле мало по сравнению с характерным атомным полем рассматриваемой атомной системы [2].

Основная идея Келдыша заключалась в том, чтобы заменить неизвестную точную волновую функцию конечного состояния на так называемую волковскую волновую функцию, в которой пренебрегается полем атомного остова и учитывается только поле электромагнитной волны. В калибровке длины этой волновая функция имеет следующий вид

, (12)

Здесь векторный потенциал электромагнитного поля связан с напряженностью поля известным соотношением

, (13)

Указанная волновая функция (11) описывает электрон, колеблющийся в поле электромагнитной волны и имеющий канонический импульс . Средняя (за период колебаний) энергия колебаний Eкол электрона в поле монохроматической электромагнитной волны с частотой равна (для поля линейной поляризации) или (для поля циркулярной поляризации).

Тогда из (10) для амплитуды связанно-свободного перехода получим приближенное выражение:

, (14)

Энергия фотона лазерного излучения предполагается в подходе Келдыша малой по сравнению с потенциалом ионизации атома (или атомарного иона):

,

Это условие, вместе с условием малости напряженности поля по сравнению с атомной напряженностью, позволяет вычислить аналитически амплитуду перехода, используя метод перевала при интегрировании по времени. Конечно. Такой подход наиболее приемлем для короткодействующего потенциала, для которого только волновая функция S - состояния непрерывного спектра не является плоской волной.

В предположении, что лазерное поле является монохроматическим, т.е. напряженность поля лазерного излучения имеет вид

,

Келдыш получил вероятность ионизации в единицу времени. Без учета предэкспоненты для случая поля линейной поляризации эта экспоненциально малая вероятность не зависит от вида атомарного потенциала и имеет универсальный вид:

, (15)

В полученном выражении введен так называемый параметр адиабатичности (или параметр Келдыша)

; (16)

Именно он и определяет характер процесса нелинейной ионизации. Еще раз подчеркнем, что полученное выражение справедливо с потенциальной точностью. Для поля циркулярной или эллиптической поляризации аналогичное выражение выглядит более громоздко, и мы его не приводим.

Отметим также, что модель Келдыша калибровочно неинвариантна. Это означает, что выражение для вероятности нелинейной ионизации зависит от того, в какой форме выбирается взаимодействие атома с полем лазерного излучения: в калибровке « длины» или же в калибровке «скорости». Априори неясно, какая из этих форм дает более точные результаты [1].

3.2.1 Туннельный предел

Туннельный режим соответствует низкочастотному пределу, когда параметр адиабатичности много меньше единицы, точнее, . В этом пределе зависимость вероятности ионизации от частоты поля исчезает, а сама вероятность ионизации в единицу времени (15) приобретает ту же форму, что и для ионизации атома медленно меняющимся со временем электрическим полем , усредненную по периоду поля:

, (17)

Основной вклад в эту вероятность дают слагаемые в сумме (15) с очень большими числами N поглощенных фотонов порядка . Эти числа велики по сравнению с минимальным числом поглощенных фотонов, допустимым законом сохранения энергии. Сумма по числам поглощенных фотонов в окрестности этого значения заменяется непрерывным интегрированием. Так выглядит надпороговое поглощение фотонов электромагнитного излучения в туннельном режиме ионизации [1].

Однако точное решение указанной задачи для ионизации основного состояния атома водорода постоянным электрическим полем с учетом усреднения вероятности по периоду медленно меняющегося поля линейной поляризации дает результат с другой предэкспонентой:

; (18)

Необходимо отметить, что выражение (18) показывает вероятность ионизации одного атома в единицу времени [2].

3.3 Механизм ионизации

Важнейшим механизмом рождения зарядов в разрядах является ионизация невозбужденных молекул ударами электронов. Скорость ионизации, т.е. число актов в 1см3 за 1с равно

, (19)

,

где - сечение ионизации электронами с энергией , - функция их распределения по энергиям, I- потенциал ионизации, - частота ионизации - постоянная, N- число молекул.

Частота ионизации является главной характеристикой процесса. Скорость ионизации целесообразно характеризовать ионизационным коэффициентом - число актов ионизации совершаемых электроном на 1см пути вдоль поля Е.

В нашем случае постоянного поля (20), а электронная лавина нарастает вдоль направления движения Х по закону ;

3.4 Пробой нашего разрядного промежутка механизмом размножения лавин

Напряженность поля равна (21), где U- приложенное напряжение к электродам d- расстояние между ними. Пусть со стороны катода вылетел один электрон. На анод в результате размножения поступит электронов, т.е. от одного первичного получится новых электронов и столько же положительных ионов. Будучи вытянутыми на катод, ионы вырвут из него вторичных электронов, которые породят новые лавины, т.е. произойдет пробой если в каждом цикле число вторичных электронов будет превышать число первичных ( )

Величина резко зависит от E, как экспонента в экспоненте, т.е. условие =1 достаточно точно характеризует величину пробивного поля Ei

; (22)

это условие называется критерием Таунсенда.

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7027
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее