135861 (593918), страница 4
Текст из файла (страница 4)
После отработки заданного счётчиком DD3 числа дозвонов до абонента (в нашем случае – шесть), через элемент DD1.4 схема приводится в исходное состояние и переходит в режим ожидания.
Практически, для активизации охранного устройства необходимо сделать следующее:
-
проложить охранный шлейф от устройства до датчика (микропереключатель или геркон в двери, окнах и т.п.);
-
при не включённом переключателе SA1 функции телефона остаются неизменными;
-
при необходимости поставить помещение под охрану - набрать номер и дозвониться до выбранного абонента (всё это без включения SA1);
-
после чего нажать режим «охрана» переключателем SA1 и в течение 30 секунд выйти из квартиры (замкнуть датчик охраны).
Информация о набранном номере удерживается в памяти 1008ВЖ10 до тех пор, пока на входе устройства – 60 В от реальной телефонной линии. В случае кратковременного разрыва охранного шлейфа (размыкания датчика) устройство автоматически «снимает трубку», шесть раз с интервалом в одну минуту дозванивается до заранее записанного в память номера и подаёт характерный сигнал тревоги.
Главным достоинством схемного решения разрабатываемого устройства является то, что питание схемы осуществляется от напряжения телефонной линии, в связи с очень малым энергопотреблением применённых микросхем, выполненных по КМДП-технологии. Учитывая, что наличие питающего напряжения в современных телефонных линиях очень высока, можно обойтись и без резервирования питания устройства охраны, что в значительной степени удешевляет конструкцию прибора. Кроме того, резервирование питания устройства приводит (при срабатывании системы резервирования) к меньшей помехозащищённости схемы и повышению вероятности ложного срабатывания охранного устройства. В этом отношении разрабатываемое устройство свободно от перечисленных недостатков.
Схема охранного устройства по своим характеристикам соответствует ГОСТ 7153-85 – «Аппараты телефонные общего применения. Технические условия» и может применяться в качестве индивидуального охранного устройства для помещений.
4.4. Расчёт элементов принципиальной схемы.
Электрический расчёт электронного ключа.
Аналоговые ключи предназначены для коммутации аналоговых сигналов от источника на нагрузку с малыми искажениями. Они широко применяются в ЦАП, АЦП, устройствах выборки и запоминания сигналов, для коммутации аналоговых сигналов источников на общую нагрузку и для других целей. Аналоговые ключи могут коммутировать ток и напряжение. В нашем случае необходим коммутатор напряжения.
В цепи для коммутации напряжения нагрузка должна иметь достаточно высокое сопротивление по сравнению с выходным сопротивлением источника сигнала. Реальные аналоговые ключи вносят погрешность при передаче сигнала от источника в нагрузку. Основными параметрами ключа, определяющими величину погрешности, являются: остаточное напряжение на замкнутом ключе, остаточный ток разомкнутого ключа и конечное время переключения. Основной задачей проектирования аналоговых ключей является минимизация перечисленных параметров, и тем самым уменьшение погрешности, вносимой ключами при коммутации сигнала.
Рис. 4.9. Транзисторный ключ с гальванической цепью управления.
Источником питания аналогового ключа служит коммутируемое напряжение Uвх, значение которого может изменяться в широких пределах и достигать весьма малых значений (десятков милливольт). При подаче отрицательного управляющего нарпяжения Uупр< 0 транзистор закрывается, через резистор Rк будет протекать тепловой ток коллектора и напряжение между коллектором и эмиттером Uкэ = Uвх – Iк0 Rк Uвх. Пусть под действием отпирающего напряжения Uупр > 0 в базовой цепи проходит ток Iб. Для всех значений коллекторного тока Iк<< β Iб(Iк= Uвх/Rк , β – коэффициент передачи базового тока) транзистор будет насыщен и напряжение Uкэ очень мало. В режиме насыщения коллекторный и эмиттерный переходы открыты, выходное напряжение Uкэ = Uбэ- Uбк. При глубоком насыщении транзистора (Iб β/ Iк > 3…4) остаточное напряжение на замкнутом ключе
где βI – коэффициент передачи базового тока при инверсном включении транзистора; φт – тепловой потенциал, пропорциональный абсолютной температуре (при 300 К φт 26 мВ); rэн – объёмное сопротивление области эмиттера насыщенного транзистора.
Выходное сопротивление насыщенного транзистора (сопротивление замкнутого ключа) Rвых обычно составляет единицы и десятки Ом и может быть определено по формуле
где rкн - объёмное сопротивление области коллектора, насыщенного транзистора.
Рассмотрим влияние цепи управления на свойства ключа. Состояние его определяется уровнем управляющего напряжения Uупр и значением сопротивления Rб. Стоит отметить, что схема может коммутировать как положительное, так и отрицательное напряжение Uвх. При отрицательном управляющем напряжении Uупр' транзистор должен быть заперт (Uбк< 0, Uбэ < 0) и напряжение Uвых= 0. Если на входе действует положительное напряжение Uупр'', транзистор будет насыщен, а напряжение Uвых= Uвх . В насыщенном режиме в схеме установятся следующие токи: Iб = (Uупр'' – Uбэ – Uвх) / Rб , Iн = Uвых / Rн .
Исходя из приведённых формул рассчитаем Rб :
Rб = (Uупр'' – Uбэ – Uвх) / Iб
Rб = ( 3 - 0,6 – 0,4) / 0,00002 = 100 кОм.
5. Конструкторско-технологическая часть.
5.1. Разработка конструкции устройства.
Печатная плата охранного устройства является основным элементом при проектировании РЭА. Она объединяет печатные узлы и другие элементы. Разработку конструкции печатной платы можно производить исходя из базовых несущих конструкций, то есть исходя из размеров корпуса стандартного кнопочного телефона-трубки, величина которых, независимо от производителя, отличается незначительно, в зависимости от образцов. Это позволяет повысить коэффициент заполнения объема, уменьшить массу и габаритные размеры изделия. Таким образом, применяем пластмассовый корпус телефона-трубки, производством которых занимаются многие отечественные цеха по выпуску пластмассовой продукции.
Для пайки применяют припой ПОС – 61.
Габаритные размеры печатной платы в длину и ширину соответственно: 150 мм и 60 мм.
Высота определяется высотой установки применяемых радиоэлементов на печатной плате и составляет 15 мм.
5.2. Выбор и определение типа платы, ее технологии изготовления, класса точности, габаритных размеров, материала, толщины, шага координатной сетки.
По конструкции печатные платы с жестким и гибким основанием делятся на типы:
-
односторонние;
-
двусторонние;
-
многослойные.
Для данного изделия достаточно использовать одностороннюю печатную плату с металлизированными монтажными и переходными отверстиями. ОПП с металлизированными отверстиями характеризуются высокими коммутационными свойствами и повышенной прочностью соединения вывода навесного элемента с проводящим рисунком платы.
Для изготовления печатной платы в соответствии с ОСТ 4.010.022 и исходя из особенностей производства выбираем комбинированный позитивный метод.
В соответствии с ГОСТ 2.3751-86 для данного изделия необходимо выбрать четвертый класс точности печатной платы.
Габаритные размеры печатных плат должны соответствовать ГОСТ 10317-79. Для ОПП максимальные размеры могут быть 600 х 600 мм. Габаритные размеры данной печатной платы удовлетворяют требованиям данного ГОСТа.
В соответствии с требованиями ОСТ 4.077.000 выбираем материал для платы на основании стеклоткани – стеклотекстолит СФ-2-50-2 ГОСТ 10316-78. Толщина 2 мм.
В соответствии с ГОСТ 24140-78 и исходя из особенностей схемы, выбираем шаг координатной сетки 1,25 мм.
Способ получения рисунка – фотохимический.
6. Номинальное значение диаметров монтажных отверстий:
а) для микросхем
dэ=0,5 мм d=0,9 мм
б) для резисторов
dэ=0,5 мм d=0,9 мм
в) для диодов и стабилитронов
dэ=0,5 мм d=0,9 мм
г) для транзисторов
dэ=0,5 мм d=0,9 мм
д) для конденсаторов
dэ=0,5 мм d=0,9 мм
е) для разъема
dэ=1 мм d=1,4 мм
Значения диаметров сводятся к предпочтительному ряду размеров монтажных отверстий:
0,7; 0,9; 1,1; 1,3; 1,5 мм.
Номинальное значение диаметров монтажных отверстий для разъема: d=1,5 мм.
5.3. Расчёт показателей надёжности охранного устройства.
Расчёт надёжности разрабатываемого устройства произведён на IBM-совместимом компьютере на кафедре Радиотехники СЗПИ с помощью Basic-программы для расчёта показателей надёжности радиоэлектронных средств при внезапных отказах их электрорадиоэлементов.
Ниже приводится листинг программы расчёта и распечатка расчётов программы.
5.4. Оценка вероятности ложного срабатывания устройства охранной сигнализации.
В общем случае вероятность ложного срабатывания определяется надёжностью всего устройства в целом, которая, по произведённым выше расчётам очень велика – 0,9983391. Поэтому, в большей степени вероятность ложного срабатывания будет зависеть от надёжности применяемых датчиков, а так как датчиков используется несколько (в зависимости от особенностей объекта), то общая вероятность ложного срабатывания будет определяться суммой надёжности применяемых датчиков.
В нашем случае предпочтительнее всего использовать герконовые датчики, состоящие из герметизированных магнитоуправляемых контактов, представляющих собой контактные ферромагнитные пружины, помещённые в герметичные стеклянные баллоны, заполненные инертным газом, азотом высокой чистоты или водородом. Контактные элементы являются одновременно элементами магнитной цепи. Под действием магнитного поля достаточной напряжённости ферромагнитные контактные пружины деформируются и замыкают или размыкают контакты. Достоинство магнитоуправляемых контактов – большая износоустойчивость и очень малое время срабатывания. В связи с высокой износоустойчивостью срок службы самих датчиков очень большой.
Поэтому вероятность ложного срабатывания устройства ничтожна, даже если используется несколько герконовых датчиков, надёжность которых в сумме очень велика.
6. Экономическое обоснование проекта.
6.1. Выбор базового варианта.
В качестве устройства-аналога для сравнения с проектируемым устройством выбираем объектовый прибор DLR-100, изготавливаемый НТКФ “C.NORD” г. Санкт-Петербурга. DLR-100 представляет собой коммуникатор для связи между контрольной панелью и центральной станцией и/или частным лицом. Объектовый прибор DLR-100 может передавать сообщения по телефонной линии и радиоканалу при комплектации радиопередатчиком. Он поддерживает все основные форматы передачи данных и позволяет передавать на центральную станцию широкий спектр сообщений
Его основные технико-экономические показатели :
- 4 номера для дозвона по частным телефонным номерам;
-
5 входных линий;
-
программирование каждой линии как на размыкание, так и на замыкание;
-
Масса 1,5 кГ;
-
Габаритные размеры 300х250х100 мм;
-
Потребляемая мощность 50 Вт;
-
Оптовая цена 3080 руб.
6.2. Расчёт себестоимости. Определение оптовой цены.
Расчет себестоимости устройства можно осуществить с помощью расчетно-аналитического метода. Его сущность сводится к тому, что прямые затраты на единицу продукции определяются путем нормативного расчета себестоимости проектируемого устройства по статьям калькуляции. По существующей классификации затрат принят следующий состав статей калькуляции:
-
Сырье и материалы.
-
Возвратные отходы.
-
Покупные комплектующие изделия.
-
Основная заработная плата производственных рабочих.
-
Дополнительная заработная плата производственных рабочих.
-
Отчисления на социальные нужды с заработной платы производственных рабочих.
-
Расходы на подготовку и освоение производства.
-
Износ инструментов и приспособлений целевого назначения и социальные расходы.
-
Расходы на содержание и эксплуатацию оборудования.
-
Цеховые расходы.
-
Общезаводские расходы.
-
Прочие производственные расходы.
-
Внепроизводственные расходы.
6.2.1. Сырьё и материалы.
Эта статья включает в себя затраты на основные материалы, расходуемые в нашем случае на изготовление печатного узла.
Таблица расхода материалов в расчете на 1 печатную плату:
Наименование материалов | Марка или типоразмер ГОСТ, ТУ | Ед. Изм | Норма расх. на 1 изд. | Цена на ед. измер. | Стоимость материалов, руб. |
Стеклотекстолит Припой Флюс Лак Спирт Хлористое железо | СФ-2-50 ГОСТ 10316-78 ПОС-61 ГОСТ 21930-76 ФКС Н0064-63 УР-231 ТУ-6-10-863-76 Марки А ГОСТ 19299-71 ГОСТ 9640-75 | Кг Кг Кг Кг Кг Кг | 0,08 0,01 0,002 0,011 0,013 0,02 | 62 153 51 23 32 10 | 4,96 1,53 0,102 0,253 0,416 0,2 |
Итого: 7,46