125919 (593183), страница 8

Файл №593183 125919 (Разработка источников диффузионного легирования для производства кремниевых солнечных элементов) 8 страница125919 (593183) страница 82016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 8)

В зависимости от условий импульсного нагрева и, в первую очередь, от экспозиционной мощности излучения, процесс можно проводить как в твердой фазе (фотонный отжиг), так и с плавлением – рекристаллизацией (лазерный отжиг и диффузия). Для современной технологии наибольший интерес представляет твердофазный режим благодаря соответственно другим технологическим операциям. В этом случае используют примесные покрытия, жидкие и газообразные источники.

Если пластину, находящуюся в атмосфере легирующего элемента, например, PCl3, BCl3, B(CH3)3, B(C2H5)3, B2H6, подвергать воздействию импульсов лазерного излучения, приповерхностные области расплавляются, при этом удаляется получать очень мелкие бездефектные слои с высокой концентрацией примеси. Благодаря сильному различию коэффициентов диффузии примеси в жидкой и твердой фазе, толщина легированного слоя определяется толщиной расплавленного слоя, а концентрация примеси зависит от ее растворимости в жидкой фазе.

2. ТЕХНОЛОГИЯ И ОБОРУДОВАНИЕ ДЛЯ ПРОВЕДЕНИЯ ПРОЦЕССА ДИФФУЗИИ И КОНТРОЛЯ ПАРАМЕТРОВ ДИФФУЗИОННЫХ СЛОЕВ

В данном дипломном проекте рассматривается технология изготовления p-n перехода в кремниевых солнечных элементах методом диффузии примесей в кремний. Для проведения процесса диффузии полупроводниковые пластины кремния подвергаются высокотемпературной обработке, проводимой в диффузионной печи.

Принцип работы диффузионной печи основан на явлении резистивного нагрева. Резистивным называется нагрев проводящего тела при прохождении через него электрического тока. Для выделения тепла в твердом проводнике в основном используется переменный электрический ток. Применение постоянного тока затруднено и экономически невыгодно из-за отсутствия источников (генераторов) большой силы тока и низкого напряжения, которые необходимы для выделения тепла в твердом проводнике, обладающем высокой электропроводностью.

Явление выделения тепла в проводнике при пропускании тока нашло применение в печах прямого (контактного) и косвенного нагрева.

В печах сопротивления прямого нагрева ток подводится непосредственно к нагреваемому изделию. Диффузионные печи являются печами сопротивления косвенного нагрева, у которых в качестве рабочего тела используют специальные нагреватели, выполненные из высокоомных жаропрочных материалов. При этом передача тепла нагреваемому изделию осуществляется излучением. Преимуществами печей сопротивления косвенного нагрева являются простота регулирования температуры и получение требуемого распределения температуры в печи.

Для проведения процессов диффузии при выполнении экспериментальной части дипломного проекта использовалась резистивная печь СУОЛ-044 12-М2-У42, функциональная схема и изображение которой представлены на рис. 2.1.

а) б)

Рис. 2.1. Функциональная схема (а) и изображение (б) электропечи СУОЛ-044 12-М2-У42: 1 – нагревательная камера, 2 – блок управления.

Электропечь представляет собой прямоугольный корпус, выполненный из тонколистовой стали, в котором размещены камеры нагрева и блок управления. Камера нагрева состоит из нагревателя, защитной трубы и двух керамических фланцев. Нагреватель выполнен в виде керамической трубы, на которой высокоглиноземистой обмазкой закреплена проволока из сплава сопротивления. Внутренняя поверхность трубы нагревателя образует рабочее пространство электропечи. Блок управления служит для автоматического поддержания заданной температуры с точностью ± 2°С. Для уменьшения тепловых потерь через торцевые отверстия рабочей камеры последние закрываются керамической пробкой.

Рабочей средой этой печи является воздух. Полупроводниковые пластины помещаются в молибденовую лодочку и вносятся в реактор печи. Проведение диффузионного отжига в атмосфере воздуха является особенностью данного дипломного проекта. Разработка источника диффузионного легирования кремния, который будет давать надежные результаты при проведении отжига на воздухе может значительно удешевить технологию изготовления кремниевых солнечных элементов.

Термическая обработка полупроводниковых подложек в диффузионной печи производится следующим образом. Сначала печь выводят на заданный температурный режим. Время разогрева печи до максимальной температуры с установлением теплового режима составляет не менее 2,5 ч. После этого в печь вводятся полупроводниковые пластины, помещенные в молибденовую лодочку. После определенной выдержки пластин при заданной температуре лодочку с пластинами извлекают из реактора.

Необходимо обратить внимание на требование к стабильности поддержания заданной температуры диффузионных печей. Если проанализировать зависимость коэффициента диффузии от температуры, то можно заметить, что небольшое изменение температуры может привести к значительному увеличению коэффициента диффузии, а значит, и глубины залегания легирующего слоя. Так, при увеличении температуры через каждые 100°С, начиная от 900°С, коэффициент диффузии увеличивается примерно в пять раз [17].

Кроме того, при введении в реактор лодочки с полупроводниковыми пластинами, имеющими комнатную температуру, вносятся длительные возмущения в температурный статический режим диффузионной печи. Точность поддержания температуры в рабочей зоне диффузии будет меняться, что приведет к изменениям глубины и профиля распределения примесей в подложке. А быстрая загрузка или выгрузка пластин из высокотемпературной зоны может привести к их растрескиванию в результате термоудара.

Нанесение поверхностного источника диффузанта на поверхность полупроводниковых пластин осуществлялось в основном методом центрифугирования. Сущность данного метода заключается в том, что на пластину, закрепленную на центрифуге пипеткой наносится слой раствора. За счет вращательного движения пластины вокруг своей оси достигается равномернрсть нанесенного слоя. Скорость вращения центрифуги, которая использовалась в экспериментах, составляет 2750 об/мин.

В данном дипломном проекте контроль параметров диффузионных слоев производился путем измерения глубины залегания p – n перехода. Для определения глубины залегания p – n перехода применялся метод сферического шлифа, известный также под названием метода лунки. Этот метод удобен для измерения тонких диффузионных слоев, он является универсальным и при необходимости может быть использован для измерения толщин окисных пленок на кремнии.

Метод основан на получении в пластинке кремния сферической лунки, выявлении диффузионных слоев окрашиванием или осаждением металла и измерения под микроскопом линейных размеров лунки. После проведения этих простейших измерений глубина диффузионного слоя легко рассчитывается.

Необходимо заметить, что между процессом диффузионного отжига и контролем глубины залегания p – n перехода методом лунки обязательным является химическая обработка пластин. Когда пластины извлекаются из диффузионной печи, то на их поверхности присутствует пленка примесносиликатного стекла, которое необходимо удалить. Если пленка получилась цветная, то ее легко удалить путем погружения пластин в разбавленный водный раствор плавиковой кислоты. Если химическую обработку не проводить, то лунка шлифоваться не будет.

Рис. 2.2. Функциональная схема установки для изготовления шар-шлифа: 1 – полупроводниковая подложка, 2 – стальной шар, 3 – электродвигатель, 4 – блок управления.

Для изготовления шар-шлифа использовалась установка ЕТМ 2.600.047, функциональная схема которой приведена на рис. 2.2. Методика получения лунки такова. Исследуемый образец (пластинка кремния с диффузионным слоем) помещается на столик и закрепляется на нем с помощью вакуумной системы. Для шлифовки пластину приводят в соприкосновение с стальным шаром, на поверхность которого наносится абразив, который находится в масляной суспензии. В качестве абразива использовался алмазный порошок (размер зерна порядка одного микрона). Стальной шар соединен с электродвигателем, включение которого приводит шар во вращение и таким образом вышлифовывается лунка. Блок управления предназначен для регулирования работы установки, в том числе управлением скорости вращения электродвигателя, давлением пластины к шару, а также позволяет задавать автоматический режим.

После того как лунки сделаны, пластину следует обезжирить, например, кипячением в изопропиловом спирте. Далее следует окрасить лунку. Окрашивание шлифов в специальных растворах происходит за счет различия электродных потенциалов p- и n-областей, которое обуславливает избирательное осаждение меди на p-область или избирательное оксидирование n-области. В результате проведенных экспериментов было установлено, что эффективное окрашивание происходит, если пластины кремния с вышлифованными лунками поместить в раствор плавиковой кислоты с небольшим добавлением азотной кислоты. Практика показала, что если азотную кислоту добавлять прямо в раствор плавиковой, то это приводит к травлению поверхности пластины. Поэтому можно рекомендовать предварительно разбавлять азотную кислоту в дистилированной воде и уже этот раствор пипеткой добавлять в плавиковую кислоту, где уже находится пластинка кремния. Ободок у шлифов окрасится в темный цвет в случае n+ - p перехода.

Окрашенные шлифы позволяют под микроскопом измерить не истинную толщину диффузионного слоя xj, а существенно большую величину – хорду L между двумя окружностями, внешняя из которых образована пересечением лунки с поверхностью пластины, а внутренняя является выявленной границей p – n перехода (рис. 2.3). Глубина расположения p – n перехода определяется по формуле [5,6]:

, (2.1)

где D – диаметр шара.

Рис. 2.3. Пояснение к способу изготовления сферического шлифа.

Точность измерений описанным методом составляет примерно ± 3 % и определяется в основном тщательностью приготовления и окрашивания шлифа. От глубины приникновения шара в кремний точность в первом приближении не зависит, однако рекомендуется делать шлиф таким образом, чтобы внутренняя окружность имела малый (по сравнению с внешней) диаметр, т.е. шлиф должен быть неглубоким. Для повышения точности измерений обычно делают несколько (2 – 5) шлифов и результат усредняют [6].

Для установки ЕТМ 2.600.047 диаметр стального шара составляет 26,5 мм. Подставляя это значение в формулу (2.1) получим эмпирическую формулу пересчета глубины залегания p – n перехода от значения хорды L:

, [мкм] (2.2)

где L – длина хорды, [мкм].

3. РАЗРАБОТКА ТЕХНОЛОГИИ ИЗГОТОВЛЕНИЯ ИСТОЧНИКОВ ДИФФУЗИОННОГО ЛЕГИРОВАНИЯ КРЕМНИЯ БОРОМ И ФОСФОРОМ И ИХ ИССЛЕДОВАНИЕ

В данном разделе будет проведено исследование нескольких поверхностных источников для диффузионного легирования кремния, также будет рассмотрен твердый планарный источник бора – нитрид бора. Кроме поверхностных источников на основе простых неорганических соединений рассмотрен источник на основе легированного окисла.

Контроль параметров осуществлялся путем определения глубины залегания p – n перехода (xj) методом сферического шлифа. Методика измерений такова: на пластине кремния делается несколько лунок, после проявления на каждой из лунок измеряется длина хорды Li, после чего по формуле (2.2) производится пересчет на глубину залегания xji. Принятая глубина залегания xj определяется как усредненное значение от xji.

Диффузионный отжиг проводился в атмосфере воздуха при температурах ниже 1000°С. Это связано с тем, что при более низких температурах диффузии образуется меньше дефектов на полупроводниковой пластине кремния, соответственно увеличится время жизни неосновных носителей тока и, в конечном итоге, коэффициент полезного действия солнечного элемента.

3.1. Разработка и испытание поверхностного источника бора на основе спиртового раствора борной кислоты

Борная кислота (H3BO3) в безводном виде представляет собой безцветное кристаллическое вещество. Для приготовления раствора заданное количество порошка борной кислоты растворяется в этиловом спирте (C2H5OH), процентное содержание H3BO3 в приготовленном растворе составило 5 %.

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6381
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее