125453 (593112), страница 5
Текст из файла (страница 5)
Переход к рыночным отношениям, неплатежеспособность потребителя, падение спроса на металлургическую продукцию в стране и усиление конкуренции ставят перед металлургами задачу по повышению качества стали, удовлетворяющего требованиям потребителей внутри Росси и зарубежных заказчиков.
Предъявляемые к трубам большого диаметра для транспортировки нефти и газа требования неуклонно возрастают в связи с увеличением транспортируемых объёмов при одновременном обеспечении высокого уровня безопасности. Эксплуатационная надёжность трубопроводов оценивается в первую очередь, исходя из расчётов их прочностных характеристик, к которым относятся: предел текучести, предел прочности, относительное удлинение при рабочих температурах и давлениях, достаточная вязкость и стойкость к хрупкому разрушению, а также свариваемость в полевых условиях.
В настоящее время для производства газопроводных труб диаметром (1020–1420) мм. используется ряд низколегированных сталей (10ГСБ, 09Г2С, 17Г1С, 10Г2СБ) класса прочности К 70 (согласно международному стандарту).
Анализ показывает, что указанные свойства стали определяются прежде всего химическим составом и степенью чистоты, которые должны быть отрегулированы в ходе ведения сталеплавильных процессов, а также достижения микроструктуры, зависящей от технологии прокатки и термообработки.
Проведено большое количество исследований по выявлению влияния примесных элементов – серы, фосфора, азота и водорода на прочностные характеристики трубных сталей и определены пределы их допустимого содержания, исходя из требований в отношении указанных свойств.
Наиболее радикальными путями повышения ударной вязкости и снижения анизотропии вязких свойств в низколегированных сталях, особенно подвергаемых прокатке по контролируемым режимам является снижение содержания серы и модифицирование сульфидных включений. Для получения удовлетворительных показателей вязкости и пластичности трубной стали содержание серы в ней должно составлять 0,003–0,006% /6,7/. Для сталей эксплуатируемых в условиях севера, а также сталей с повышенным сопротивлением растрескиванию в серосодержащей среде и повышенной стойкостью к водородному растрескиванию, предъявляются требования весьма низкого содержания серы: 0,001% и ниже /8,9/.
В настоящее время трубная сталь, производимая на отечественных предприятиях, содержит 0,006–0,012% серы.
Фосфор также отрицательно влияет на хладостойкость стали. Охрупчивающее влияние фосфора проявляется в ослаблении межкристаллических связей в результате обогащения границ зёрен элементарным фосфором и образованием неметаллических включений фосфидной эвтектики.
Проведённые исследования показали, что для сталей класса прочности К60-К 70 содержание фосфора должно составлять 0,010%, для сталей категорий прочности К 80-К 100 нужно иметь более низкое содержание фосфора /10,11/. Снижения отрицательного влияния фосфора можно достигнуть связыванием его в интерметаллидные соединения.
Избыточное содержание азота в стали приводит к понижению предела текучести и временного сопротивления, к тому же он является основной причиной старения малоуглеродистых сталей. В стали производимой в электропечах содержится 0,008–0,012% азота. Поскольку азот является трудноудалимой примесью, его отрицательное влияние можно нейтрализовать путём введения микродобавок титана или другого нитридообразующего элемента для получения высокопрочных нитридов. При этом достигается в первую очередь повышение вязких свойств сталей. Но для сведения вредного влияния азота к минимуму желательно получать сталь с содержанием этого элемента 0,004% /11,12/.
Водород слабо влияет на ударную вязкость и хладноломкость. Из низколегированных сталей он относительно легко удаляется благодаря повышенной диффузии. Однако при повышенном содержании водорода в стали наблюдается так называемое водородное растрескивание. Для предотвращения этого явления (особенно в трубах с большой толщиной стенки) желательно, чтобы содержание водорода в стали не превышало 0,00015%. Стали не обладающие повышенной стойкостью к водородному растрескиванию содержат 0,0003–0,0004% водорода /6,11/.
Большое влияние на качество металла оказывает количество и морфология неметаллических включений (НВ). Отмечается отрицательное влияние НВ на хладостойкость, вязкость разрушения при отрицательной температуре и усталостные свойства. Наиболее неблагоприятными являются сульфиды и оксиды, особенно если они вытянутой формы. Наличие в стали силикатов и алюминатов также снижает вязкость, а такие включения как высокопрочные нитриды на вышеуказанные свойства практически не влияют /13/.
Средний объёмный процент включений в трубных сталях составляет 0,036–0,065%. Примерно 60–70% из них составляют сульфиды, 10% алюминаты, 10–15% сложные оксиды и около 5–7% сульфоалюминаты /7,14/.
Количество крупных включений (диаметром от 40 мкм и более) составляет примерно 3 шт./см2, из них 98% сульфиды и только 2% оксиды /9/.
Основная масса включений, образующихся в жидкой стали имеет размер 1–15 мкм. Часть включений образуется уже в твёрдой стали, их диаметр, как правило, не превышает 1 мкм. Включения размером более 100 мкм являются экзогенными /15/.
Проведённые исследования по влиянию количества и формы сульфидов на величину ударной вязкости для стали 09Г2ФБ показали, что в сочетании с глубокой десульфурацией эффект обработки стали модифицирующими элементами может быть очень высоким. Модифицирование приводит к сфероидизации сульфидных включений. В стали не обработанной модификаторами включения имеют форму строчек протяжённостью 100–300 мкм, а в обработанной стали их диаметр не превышает 10 мкм. Основная доля НВ в стали модифицированной РЗМ имеет размер 3–4 мкм, а в стали обработанной кальцием – 5–6 мкм /7/.
Радикальным способом удаления из стали мелких 3–10 мкм включений является фильтрация керамическими фильтрами. Степень рафинирования при такой технологии составляет 40–50% /16/.
Затруднительным является удаление включений размером 2 мкм, хотя скопления именно таких включений часто обнаруживаются в местах хрупкого разрушения образцов /14/.
В настоящее время штрипс, производимый в странах СНГ, содержит суммарное количество вредных примесей (серы, фосфора, азота, водорода) на уровне 0,03–0,04%, что в значительной степени влияет на выход годного металла труб, снижение их служебных характеристик и конкурентоспособности на мировом рынке. Для удовлетворения современных требований необходимо разработать новые технологии внепечной обработки стали, при которых количество вредных примесей в готовом металле не будет превышать величины 0,0045–0,010% /17/.
Проведённый анализ литературных данных позволяет заключить, что разрабатываемая в дипломе комплексная технология рафинирования металла должна позволять получать в готовом металле содержание вредных примесей на уровне ([0] 20 ppm.; [N]
50 ppm; [H.B] < 20 ppm; [P]
70 ppm; [S]
20 ppm). Это обеспечит достижение необходимого уровня эксплуатационных и служебных характеристик, гарантирующих высокое качество металла и его свойств.
2. Техника производства
2.1 Разработка конструкции агрегата АКОС
2.1.1 Расчёт технических характеристик агрегата «ковш-печь» с вакууматором
Для откачки газов из агрегата «ковш – печь», а также для создания необходимого разряжения применяется энжекторный насос.
1. Водород уменьшается с 5 см3/100 г. до 2 см.3/100 г. Следовательно выделяется
VН2 = 3 м.3 водорода.
2. Содержание азота сокращается на 15%. [N2]н = 0,08%
VN2 = 9,6 м.3
где М – масса плавки, т.;
МN2 – молярная масса азота, г./моль;
[N]н – начальная концентрация азота, %.
3. Содержание углерода уменьшается на [C] = 0,05%
VCO = 93,3 м.3
где МСО – молярная масса угарного газа, г./моль;
МС – молярная масса углерода, г./моль.
4. Продувку аргоном ведём в течении 20 мин. с интенсивностью 0,05 м.3/(мин. т.)
VAr = =100 м.3
5. Объём отходящих газов составляет
,
где V – суммарный объём отходящих газов, м.3;
V = 3 + 9,6 + 93,3 + 100 = 205,9 м.3
Рабочий насос обеспечивает вакуумное давление ртехн = 10 мм. рт. ст. (0,013 атм.)
1. Скорость откачки газов:
,
где Q – общее количество газов в единицу времени, м.3/мин.;
S0 – скорость откачки объекта, м3/(атм.мин.).
Преобразуя предыдущую формулу получим:
м.3/(атм.мин.)
Начальное давление насоса ph = 1 атм.
Коэффициент примем 2,5
,
где Qmax – максимальная массовая производительность насоса, м.3/мин.
м.3/мин.
2. Пропускная способность системы от входа в насос до вакуумной камеры определяется по формуле:
,
где U – пропускная способность системы.
3. Выбрав по паспорту насос и его характеристики следует провести проверочный расчёт: проверить какое остаточное давление газов (рост) обеспечивает этот насос и сравнить его с заданным значением ртехн.
Объём ковша, занимаемый металлом:
,
где VK – объём ковша, занимаемый металлом, м.3;
H – высота металла в ковше, м.;
Dср – средний по высоте диаметр металла, м.
По практическим соображениям принимаем H/Dср = 0,9.
Для 100 т металла объём ковша:
,
где m – масса металла, т;
d – плотность жидкого металла, т/м.3.
м.
H=0,92,8=2,5 м.
В выбранной технологии необходимо подогревать в АКОС металл с 1863 К до 1953 К. До той же температуры будет нагреваться шлаковая смесь CaO (40%) – Al2O3 (40%) – TiO2 (20%) массой 1,5 т и аргон, удельный расход которого составит 175 м3/т. Также следует учесть тепловой эффект реакции с алюминием, расход которого составляет 120 кг на всю плавку.
Номинальная мощность трансформатора находится:
,
где S – полная мощность трансформатора, МВА;
P – мощность, поступающая из сети, МВт;
– коэффициент мощности. По данным завода = 0,8
Мощность поступающая из сети находится:
,
где РДУГ – мощность дуг, МВт;
Э – электрический к.п.д.
В расчёте примем Э=0,8 /20/.
Мощность дуг находится по формуле:
,
где РПОЛ – полезная мощность, МВт;
РТП – мощность тепловых потерь, МВт.
По данным /20/ для 150 т ковша РТП = 4,5 МВт. Произведя пересчёт для 100 т ковша, получим:
,
Полезная мощность находится по формуле:
,
где WПОЛ – полезная энергия, МДж;
– время обработки, с.
Время обработки выбирается из расчёта времени нагрева 2 -3 К/мин.
Примем = 35 мин.
Полезную энергию находим из формулы:
,
где Мi – масса i – го компонента, т;
Сi – теплоёмкость i – го компонента, МДж/тК;
Тi – температура, на которую нагреваем, К;
Hi – тепловой эффект раскисления металла алюминием, МДж/т.
Данные по Сi и Hi приняты по данным /21/.
WПОЛ = 1000,6590 + 1,5(0,7640,4 + 0,7750,4 + 0,6190,2)1660 + 1751,781030,521660 –
– 11,371030,12 = 6585 МДж
МВт
МВт
Из проведённого расчёта видно, что существующий на агрегате «печь ковш»
АО «НОСТА» трансформатор с SН = 16 МВА вполне удовлетворяет выбранной технологии.
2.2 Разработка конструкции промковша МНЛЗ
2.2.1 Рафинирование металла в ковше