124466 (592954), страница 2
Текст из файла (страница 2)
Электроизмерительная техника делится на следующие группы [8, c. 56]:
-
Цифровые электроизмерительные приборы. Аналого-цифровые и цифро-аналоговые преобразователи.
-
Поверочные установки и установки для измерений электрических и магнитных величин.
-
Многофункциональные и многоканальные средства, измерительные системы и измерительно-вычислительные комплексы.
-
Щитовые аналоговые приборы.
-
Приборы лабораторные и переносные.
-
Меры и приборы для измерений электрических и магнитных величин.
-
Приборы электроизмерительные регистрирующие.
-
Измерительные преобразователи, усилители, трансформаторы и стабилизаторы.
-
Счетчики электрические.
-
Принадлежности, запасные и вспомогательные устройства.
1.3 Понятие о погрешностях измерений, классах точности и классификации средств измерений
Погрешность (точность) измерительного прибора характеризуется разностью показаний прибора и истинным значением измеряемой величины. В технических измерениях истинное значение измеряемой величины не может быть точно определено в силу имеющихся погрешностей измерительных приборов, которые возникают из-за целого ряда факторов, присущих собственно измерительному прибору и изменению внешних условий — магнитных и электрических полей, температуры и влажности окружающей среды и т.д. [4, c. 87]
Средства контрольно-измерительных приборов и автоматики (КИПиА) характеризуются двумя видами погрешностей: основной и дополнительной.
Основная погрешность характеризует работу прибора в нормальных условиях, оговоренных техническими условиями завода-изготовителя [1, c. 48].
Дополнительная погрешность возникает в приборе при отклонении одной или нескольких влияющих величин от требуемых технических норм завода-изготовителя [9, c. 32].
Абсолютная погрешность х — разность между показаниями рабочего прибора х и истинным (действительным) значением измеряемой величины х0, т. е. х = X — Х0.
В измерительной технике более приемлемыми являются относительная и приведенная погрешности [2, c. 29].
Относительная погрешность измерения отн характеризуется отношением абсолютной погрешности х к действительному значению измеряемой величины х0 (в процентах), т. е.
отн = (х / х0) 100 %.
Приведенная погрешность пр. представляет собой отношение абсолютной погрешности прибора х к постоянной для прибора нормирующей величины хN (диапазону измерения, длины шкалы, верхнему пределу измерения), т. е.
пр. = (х / хN ) 100 %.
Класс точности средств КИПиА — обобщенная характеристика, определяемая пределами допускаемых основной и дополнительной погрешностей и параметрами, влияющими на точность измерений, значения которых устанавливаются стандартами. Существуют следующие классы точности приборов: 0,02; 0,05; 0,1; 0,2; 0,5; 1; 1,5; 2,5; 4,0.
Погрешности измерений подразделяются на систематические и случайные [10, c. 57].
Систематическая погрешность характеризуется повторяемостью при измерениях, так как известен характер ее зависимости от измеряемой величины. Такие погрешности делятся на постоянные и временные. К постоянным относят погрешность градуировок приборов, балансировки подвижных частей и т. д. К временным относятся погрешности, связанные с изменением условий применения приборов [9, c. 39].
Случайная погрешность — погрешность измерения, изменяющаяся по неопределенному закону при многократных измерениях какой-либо постоянной величины [4, c. 57].
Погрешности средств измерений определяются методом сличения показаний образцового и ремонтируемого прибора. При ремонте и поверках измерительных приборов в качестве образцовых средств используют приборы повышенного класса точности 0,02; 0,05; 0,1; 0,2.
В метрологии — науке об измерениях — все средства для измерений классифицируют в основном по трем критериям: по виду средств измерений, принципу действия и метрологическому использованию.
По видам средств измерений различают меры, измерительные устройства и измерительные установки и системы [8, c. 28].
Под мерой понимается средство измерений, используемое для воспроизведения заданной физической величины.
Измерительный прибор — средство измерений, используемое для выработки измерительной информации в виде, пригодном для контроля (визуальном, автоматической фиксации и ввода в информационные системы).
Измерительная установка (система) — совокупность различных средств измерений (включая датчики, преобразователи), используемых для выработки сигналов измерительной информации, их обработки и использования в автоматических системах управления качеством выпускаемой продукции.
При классификации средств измерений по принципу действия в названии используется физический принцип действия данного прибора, например магнитный газоанализатор, термоэлектрический преобразователь температуры и т. д. При классификации по метрологическому назначению различаются рабочие и образцовые средства измерения [1, c. 56].
Рабочее средство измерения — средство, используемое для оценки значения измеряемого параметра (температура, давление, расход) при контроле различных технологических процессов.
Глава 2. Милливольтметр Ф5303
2.1 Назначение, структура и принцип действия милливольтметра
Рис.1. Милливольтметр Ф5303
Милливольтметр Ф5303 предназначен для измерений среднеквадратических значений напряжения в цепях переменного тока при синусоидальной и искаженной форме сигнала (рис.1) [8, c. 17].
Принцип действия прибора основан на линейном преобразовании среднеквадратичного значения выходного приведенного напряжения в постоянный ток с последующим измерением его прибором магнитоэлектрической системы.
Милливольтметр состоит из шести блоков: входного; входного усилителя; оконечного усилителя; усилителя постоянного тока; калибратора; питания и управления [10, c. 73].
Прибор смонтирован на горизонтальном шасси с вертикальной передней панелью, в металлическом корпусе с отверстиями для охлаждения.
Применяется для точных измерений в маломощных цепях электронных приборов при их проверке, настройке, регулировке и ремонте (только в закрытых помещениях) [4, c. 61].
2.2 Технические данные и характеристики
Диапазон измерения напряжения, мВ [6, c. 52]:
0,2 – 1; 0,6 – 3;
2 – 10; 6 – 30;
20 – 100;
60 – 300;
200 – 103;
600 – 3*103;
(2 ÷ 10) *103;
(6 ÷ 30) *103;
(20 ÷ 100) *103;
(60 ÷ 300) *103;
Пределы допускаемой основной погрешности в нормальной области частот в процентах от наибольшего значения диапазонов измерений: в диапазонах измерений напряжения с наибольшими значениями от 10 мВ до 300 В - не более ±0,5; в диапазонах измерений напряжения с наибольшими значениями 1; 3 мВ - не более ±1,0 [5, c. 24].
Наибольшие значения диапазонов измерений напряжения:
-
1; 3; 10; 30; 100; 300 мВ;
-
1; 3; 10; 30; 100; 300 В.
Нормальная область частот от 50 Гц до 100 мГц.
Рабочая область частот при измерении от 10 до 50 Гц и от 100 кГц до 10 МГц [9, c. 49].
Питание от сети переменного тока частотой (50 ± 1) Гц напряжением (220 ± 22) В [10, c. 29].
2.3 Эксплуатационная поверка милливольтметра компенсационным методом
Компенсационным методом на потенциометрической установке поверяются приборы высших классов 0,1 – 0,2 и 0,5 [2, c. 65].
Поверка милливольтметра, номинальный предел которых выше 20 мв, а также вольтметров с верхним пределом измерения не более номинального предела потенциометра производится по схеме 1 и 2 (рис.2, рис.3).
Схема 1 применяется в тех случаях, когда напряжение измеряется непосредственно на зажимах милливольтметра, а схема 2, когда напряжение измеряется на концах соединительных проводников прибора.
Если номинальный предел милливольтметра меньше 20 мв, то применяется схема, изображенная на рис.4.
Рис.2. Схема поверки милливольтметров с пределом mVh > 20 мв без калиброванных соединительных проводов
Рис.3. Схема поверки милливольтметров с пределом mVh > 20 мв совместно с калиброванными соединительными проводами
Рис.4. Схема поверки милливольтметров с пределом измерения меньше 20 мв
Глава 3. Техническое обслуживание и ремонт электроизмерительных приборов (милливольтметр)
3.1 Разборка и сборка измерительного механизма
Ввиду большого разнообразия конструкций измерительных механизмов приборов трудно описать все операции разборки и сборки приборов. Однако большинство операций являются общими для любых конструкций приборов, в том числе и для милливольтметра [2, c. 26].
Однородные ремонтные операции должны выполняться мастерами различной квалификации. Работы по ремонту приборов класса 1 – 1,5 – 2,5 – 4 выполняются лицами с квалификацией 4 – 6 разряда. Ремонт же приборов класса 0,2 и 0,5 сложных и специальных приборов выполняется электромеханиками 7 – 8 разряда и техниками со специальным образованием [3, c. 21].
Разборка и сборка являются ответственными операциями при ремонте приборов, поэтому выполнение этих операций должно быть аккуратным и тщательным. При небрежной разборке портятся отдельные детали, в результате чего к уже имеющимся неисправностям добавляются новые. Прежде чем приступить к разборке приборов, необходимо придумать общий порядок и целесообразность проведения полной или частичной разборки [7, c. 98].
Полная разборка производится при капитальном ремонте, связанном с перемоткой рамок, катушек, сопротивлений, изготовлением и заменой сгоревших и разрушенных деталей. Полная разборка предусматривает разъединение отдельных частей между собой. При среднем же ремонте в большинстве случаев производится неполная разборка всех узлов прибора. В этом случае ремонт ограничивается выниманием подвижной системы, заменой подпятников и заправкой кернов, сборкой подвижной системы, регулированием и подгонкой к шкале показаний прибора. Переградуировка прибора при среднем ремонте производится только при потускневшей, грязной шкале, а в остальных случаях шкала должна сохраняться с прежними цифровыми отметками. Одним из качественных показателей среднего ремонта является выпуск приборов с прежней шкалой [1, c. 65].
Разборку и сборку необходимо производить с помощью часовых пинцетов, отверток, малых электрических паяльников мощностью 20 – 30 – 50 вт, часовых кусачек, овалогубцев, плоскогубцев и специально сделанных ключей, отверток и т.д. На основании выявленных неисправностей прибора приступают к разборке. При этом соблюдается следующий порядок. Сначала снимается крышка кожуха, прибор очищается внутри от пыли и грязи. Затем определяется момент антимагнитной пружинки и отвинчивается шкала (подшкальник).
При капитальном ремонте сложных и многопредельных приборов снимается схема, замеряются все сопротивления (запись производится в рабочей тетради мастера) [10, c. 87].
Затем отпаивается внешний конец пружины. Для этого стрелка отводится рукой до максимума, причем пружинка закручивается. К пружинодержателю прикладывают нагретый электрический паяльник, и пружинка, отпаиваясь, соскальзывает с пружинодержателя. Теперь можно приступить к дальнейшей разборке. Специальным ключом, комбинированной отверткой или пинцетом отвинчивают контргайку и оправку с подпятником. Выводят крыло воздушного или магнитного успокоителя, а у приборов с квадратным сечением коробки снимают крышку успокоителя [5, c. 43].
После выполнения этих операций вынимается подвижная система прибора, проверяются подпятники и концы осей или кернов. Для этого их осматривают под микроскопом. В случае надобности керны вынимаются для заправки при помощи ручных тисочков, бокорезов или кусачек. Захваченный керн слегка поворачивается при одновременном осевом усилии.
Дальнейшая разборка подвижной системы по составным частям производится в тех случаях, когда не удается вынуть керн (вынимается ось). Но прежде чем разобрать подвижную систему по частям, нужно произвести фиксацию взаимного расположения деталей, закрепленных на оси: стрелки относительно железного лепестка и крыла успокоителя, а также деталей вдоль оси (по высоте). Для фиксации расположения стрелки, лепестка и крыла успокоителя изготовляется приспособление, в котором имеется отверстие и углубления для пропускания оси и поршенька [8, c. 76].
Разбирается милливольтметр в следующем порядке: снимается крышка или кожух прибора, замеряется момент пружин, производится внутренний осмотр, снимается электрическая схема прибора, проверяются цепи схемы, измеряются сопротивления; снимается подшкальник, отпаиваются проводники, идущие к пружинодержателям, затем вынимается обойма подвижной системы.
Особо тщательно осматривают и очищают детали и узлы подвижной и неподвижной частей; концы осей прокалываются через бумагу без ворса или накалываются в сердцевину подсолнуха. Углубление подпятника протирается палочкой, смоченной в спирте, очищается камера и крыло успокоителя.
При сборке приборов необходимо особое внимание уделять тщательности установки подвижных систем в опоры и регулировке зазоров. последовательность операций сборки обратна их последовательности при разборке. Порядок сборки прибора состоит в следующем [7, c. 32].