123439 (592823), страница 3
Текст из файла (страница 3)
где NД - работа или мощность внутренних сил;
NМ - работа или мощность, развиваемая массовыми силами,
NВ - работа или мощность внешних сил.
Дальнейшая процедура МКЭ предусматривает представление выражения (2.1) в виде функционала значений неизвестных только в узлах КЭ и построение разрешающей системы уравнений путем минимизации J по всем узловым переменным:
(2.2)
Однако, указанный способ получения разрешающих уравнений для КЭ с помощью функционала (2.1) не является единственно возможным. В настоящее время уравнения для элементов получают путем минимизации функционала, связанного с рассматриваемым дифференциальным уравнением соответствующей задачи математической физики. Известны также конечно-элементные решения, основанные на методе Галеркина. В последнем случае отпадает необходимость в вариационной формулировке задачи.
Способ получения разрешающих уравнений для КЭ, основанный на оптимизации функционала (2.1), является общепризнанным при теоретическом решении задач ОМД, поскольку вариационные принципы имеют наглядный физический смысл и достаточно строгое математическое обоснование.
По отношению к функционалу (2.1) известны три вида вариационных принципа теории пластичности в зависимости от того, через какие переменные величины выражена мощность (потенциальная энергия) деформации [8].
Принцип минимума полной мощности (полной энергии) или принцип возможных изменений деформированного состояния рассматривает мощность (потенциальную энергию) деформируемого тела как функционал произвольной системы скоростей (перемещений), удовлетворяющей кинематическим граничным условиям, и который принимает минимальное значение для системы скоростей (перемещений) фактически реализуемой в деформируемом теле.
Принцип минимума дополнительной работы Кастильяно или принцип возможных изменений напряженного состояния рассматривает дополнительную работу как функционал произвольной системы напряжении, удовлетворяющей уравнениям равновесия внутри тела и на его поверхности, и, который принимает минимальное значение для системы напряжений, фактически реализуемой в деформируемом теле.
В вариационном принципе Рейсснера или принципе возможных изменений напряженного и деформированного состояний мощность (энергия) рассматривается как функционал скоростей и напряжении, и переменные той и другой группы варьируются независимо друг от друга.
Каждому из перечисленных вариационных принципов соответствует определенная форма МКЭ. Принципу минимума полной мощности (полной энергии) соответствует кинематический метод, принципу минимума дополнительной работы - метод напряжении, а вариационному принципу Рейсснера - смешанный метод.
При нагружении тела потенциальная энергия внешних сил изменяется. При этом внешние силы совершают работу. Потенциал внешних сил W численно равен работе этих сил:
(2.3)
где P – поверхностные силы,
u – перемещения,
S – площадь поверхности тела.
В результате изменения потенциальной энергии внешних сил тело деформируется и накапливает потенциальную энергию деформации Q.
(2.4)
где - напряжения,
е - деформации,
V – объем тела.
Сумма энергии деформации и потенциала внешних сил равна полной потенциальной энергии:
(2.5)
В соответствии с принципом возможных перемещений Лагранжа изменение полной потенциальной энергии на возможных перемещениях равняется нулю:
(2.6)
При этом под возможными перемещениями u понимаются сколь угодно малые отклонения системы от положения равновесия, допускаемые наложенными на систему связями. Из уравнения (2.6)следует, что в состоянии равновесия энергия П имеет стационарное значение. Можно показать, что в положении устойчивого равновесия этот экстремум соответствует минимуму.
С учетом изложенного вариационный принцип Лагранжа для статической задачи имеет вид:
(2.7)
Минимизируя потенциальную энергию по возможным перемещениям, получаем систему линейных уравнений, решая которую определяем значения внешних сил.
2.2 Основные соотношения метода конечных элементов
Простейшим элементом, применяемым для решения осесимметричной задачи механики деформируемого твердого тела, является тороидальный элемент с тремя узлами, расположенными в вершинах треугольного сечения.
Рисунок 2.1 Конечный элемент в задаче осесимметричной деформации.
Вектор перемещений узловых точек конечного элемента имеет вид в случае осесимметричной деформации соответственно:
.
Произвольная точка элемента получает перемещения ur и uz в направлении осей r и z. Поэтому матрица u имеет вид:
Узловые перемещения и u связаны между собой матрицей аппроксимирующих функций N:
Наиболее распространенный способ получения приближенных решений на основе использования вариационного уравнения по методу Релея - Ритца. Он заключается в том, что функции перемещений задаются в виде интерполяционного полинома. Если ограничиться полиномом первой степени, то эти функции будут иметь вид:
(2.8)
Здесь i - произвольные постоянные. При линейной аппроксимации стороны треугольника после деформирования элемента остаются прямыми.
Выразим i через перемещения узлов элемента. В результате матрица N примет вид:
- площадь сечения элемента:
где ri, zi - координаты i-го узла в соответствующих осях.
Деформированное состояние в любой точке тела описывается тензором малых деформаций Коши:
В условиях осесимметричной задачи тензор деформаций второго ранга сводится к вектору:
компоненты которого выражаются через производные перемещений по соответствующим координатам:
Связь между составляющими векторов деформаций и перемещений можно представить одним матричным равенством:
(2.9)
где B – матричный дифференциальный оператор:
(2.10)
Используя (2.9) и (2.10), можно выразить деформации через узловые перемещения
(2.11)
Матрица функций формы C для осесимметричной деформации:
Заметим, что коэффициенты матрицы C зависят от координат r и z точки внутри элемента. Для треугольника с узлами в вершинах координаты r и z можно заменить средними по элементу значениями:
Вектор напряжений имеет вид:
Выразим с помощью линейного закона, выражаемого матрицей жесткости, напряжения через узловые перемещения
, (2.12)
где D – матрица материальных констант.
Потенциальная энергия деформации элемента с учетом (2.11) и (2.12)
. (2.13)
Интеграл в выражении (2.13) есть матрица жесткости выбранного элемента
. (2.14)
Элементарный объем
.
Поэтому матрица жесткости элемента записывается следующим образом:
, (2.15)
где S – площадь элемента.
С учетом проделанных преобразований уравнение равновесия элемента через узловые перемещения выражается в форме:
(2.16)
где K - матрица жесткости; P, - векторы внешних сил и узловых перемещений, соответственно.
При наличии упругих и пластических деформаций связь между напряжениями и деформациями нелинейна. Решение нелинейной системы уравнений весьма трудоемко. Поэтому при использовании деформационной теории часто используют кусочно-линейный закон связи напряжений и деформаций. Тогда при решении задачи в приращениях напряжений и деформаций е, связь между которыми можно считать линейной, получаем систему линейных уравнений:
(2.17)
Одним из способов решения задачи в приращениях является метод последовательных нагружений. Для квазистатической задачи приращения внешних сил P вычисляются на шаге по времени t. При этом вектор внешних сил P в момент времени t равен:
где n – шаг нагружения.
Таким образом, с учетом вышеизложенного, вариационное уравнение равновесия в матричной записи принимает вид:
(2.18)
где - вектор приращений перемещений.
2.3 Представление матрицы жесткости
В пределах упругости связь между приращениями напряжений и деформаций выражается законом Гука. Согласно ему компоненты приращений деформаций являются линейными функциями приращений напряжений. Пластическое состояние материала описывается теорией малых упругопластических деформаций Ильюшина. Принимается теория изотропного упрочнения. Объемная деформация в пластической зоне остается упругой и для нее выполняется объемный закон Гука:
,
- относительное изменение объема.
Модуль объемного сжатия k для изотропного тела в случае осесимметричной деформации имеет вид:
Модуль сдвига G связан с модулем Юнга E и коэффициентом Пуассона формулой:
в упругой области и
в пластической.
Здесь H – касательный модуль упрочнения. Коэффициент Ляме определяется формулой:
Таким образом, матрица материальных констант D имеет вид:
(2.19)
Следует особо отметить, что использовать матрицу жесткости в таком виде для пластического состояния можно, только связывая приращения деформаций и напряжений, о чем было сказано ранее при выводе уравнения равновесия.
Зная текущее состояние элемента, предел текучести, накопленную деформацию и приращения внешних сил, можно определить изменение напряженно-деформированного состояния на шаге приращения перемещений u и сил Р, используя для вычисления K по формуле () упругое или пластическое представление матрицы жесткости.
2.4 Пластическая деформация
Пластическая деформация твердого тела рассматривается в рамках деформационной теории пластичности. Приняты следующие исходные положения:
-
тело изотропно;
-
относительное изменение объема мало и является упругой деформацией, пропорциональной среднему давлению:
или
;
-
полные приращения составляющих деформации еij складываются из приращений составляющих упругой деформации еeij и пластической деформации
еpij: ;
-
девиаторы приращений напряжения и деформации пропорциональны:
.
Напряженно-деформированное состояние элемента на i+1 шаге характеризуется интенсивностью деформаций ei:
er, ez, rz - компоненты тензора деформаций.
Далее в разделе будут упоминаться только интенсивности деформаций и напряжений.
Если интенсивность деформаций (далее - полная деформация) какого - либо конечного элемента превысила текущий предел упругости по деформациям ee, то элемент переходит из упругого в пластическое состояние. Если материал упрочняется при пластическом деформировании, то и предел упругости по деформациям ee увеличивается на величину ee (рисунок 2.2):
Изменение предела упругости по деформациям на шаге i определяется формулой:
Пластическая деформация определяется разностью интенсивностей полной деформации e и пределом упругости по деформациям ee: