123378 (592813), страница 3

Файл №592813 123378 (Модифицирующее вещество для пропитки древесины, придающее огнестойкость композиции) 3 страница123378 (592813) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Разложение целлюлозных материалов сопровождается выделением тепла, поэтому при малой скорости теплопроводности возможно самонагревание и горение. Самый высокий тепловой эффект разложения (1088 Дж/кг) у древесины, поэтому необходимо следить за тем, чтобы она не нагревалась при плотной упаковке в больших массах выше 100° С.

Массовая скорость выгорания составляет для: древесины (конструкции зданий, мебель) - 0,48 кг/м2 *мин., пиломатериалы в штабеле - 7-8,0 кг/м *мин., бумаги - 0,48 кг/м.

Перемещение фронта пламени по поверхности твердых веществ называется распространением горения и характеризуется скоростью распространения горения (м/мин)

= I/, (1), [1]

где

I - расстояние, пройденное фронтом пламени, м;

- время, мин.

Температура воспламенения древесины 230-250°С. При соприкосновении древесины с источником огня происходит быстрое нагревание тонкого поверхностного слоя, испарение влаги и деструкция. Продукты разложения древесины, полученные при температуре < 250°С содержат в основном водяной пар и СО2, а также незначительное количество горючих газов, поэтому гореть они не способны; при температуре 250-260° С - выделяются горючие СО, метан и они воспламеняются и с этого момента древесина горит самостоятельно.

После воспламенения температура верхнего слоя древесины повышается за счет тепла, излучаемого пламенем, и достигает 290-300°С. При этой температуре выход газообразных продуктов максимальный и высота факела наибольшая. В результате разложения верхний слой древесины превращается в уголь, который в данных условиях гореть не может, так как кислород, поступающий из воздуха, весь вступает в реакцию в зоне горения пламени. Температура угля на поверхности к этому времени достигает 500-700 °С. По мере выгорания верхнего слоя древесины и превращения его в уголь нижележащий слой древесины прогревается до 300°С и разлагается. Таким образом, пламенное горение при образовании на её поверхности небольшого слоя угля ещё не прекращается. Однако скорость выхода продуктов разложения начинает уменьшаться. В дальнейшем рост слоя кокса и уменьшение выхода продуктов разложения приводит к тому, что пламя остается только у трещин угля и кислород может достигать поверхности кокса и с этого момента начинается горение кокса и одновременно продолжается горение продуктов разложения. Толщина слоя кокса достигшая к этому моменту 2-2,5 см остается постоянной, так как наступает равновесие.

1.3 Деструкция целлюлозы

Так как основным компонентом древесины является целлюлоза (50 - 58%), то при рассмотрении деструкции древесных материалов прежде всего изучается термодеструкция целлюлозы.

Термическая и термоокислительная деструкция целлюлозы изучены довольно подробно. В данном разделе будут кратко рассмотрены причины легкой воспламеняемости целлюлозных материалов.

Процессом горения ПМ предшествуют процессы деструкция, в результате которых образуются разнообразные, в том числе, летучие горючие продукты, являющиеся "топливом" для процесса горения. К основным факторам, влияющим на деструкцию полимеров, относятся структура и строение макромолекул, структурные дефекты, примеси и т.п. Особенностью ее строения является наличие реакционноспособных гидроксильных групп, обусловливающих сильное межмолекулярное взаимодействие за счет водородных связей, а также высокая энергия межатомных и химических связей в макромолекулах, связанная со строением глюкопиронозного кольца целлюлозы. Пиролиз целлюлозы протекает по радикально-ценному механизму.

В общем виде термическая деструкция целлюлозы сопровождается двумя группами реакций: деструкцией полимера и промежуточных продуктов, синтезом (конденсационные процессы), приводящих к образованию новых типов связей углерод-углерод.

При термораспаде целлюлозы в результате разрыва кислород углеродных связей происходит три основных процесса: дегидратация, деполимеризация и затем глубокая деструкция с разрушением циклов и

на основании представлений о механизме разложения целлюлозы для огнезащиты ЦМ необходимо создать условия, способствующие изменению направления распада целлюлозы и приводящих к снижению образования левоглюкозана, повышению дегидратации целлюлозы, полимеризации продуктов термораспада (образование КО) и ингибированию процесса тления, что может быть достигнуто введением замедлителей горения (ЗГ).

1.4 Снижение горючести древесины и изделий на её основе

В соответствии с требованиями пожарной безопасности деревянные конструкции зданий и сооружений должны быть подвергнуты огнезащитной обработке. Наиболее часто используемыми для этих целей и не лишёнными определенных недостатков являются водные растворы буры, поташа, фосфатов аммония, ацетата натрия и др.

В настоящее время огнезащита древесных материалов осуществляется, в основном, пропиткой древесины огнезащитными составами. На сегодняшний день учёными продолжается поиск относительно дешёвых и экологически чистых огнезащитных материалов (антипиренов) для пропитки и обработки древесины.

В Санкт-Петербургской государственной лесотехнической академии был разработан [16] способ изготовления огнезащитных древесно-стружечных плит. При их изготовлении в качестве антипирена использовали амидофосфат путём нанесения его водного раствора на древесные частицы в количестве 10-30% по сухому веществу. Высушенные древесные частицы смешивали с карбамидоформальдегидной смолой, в которую для связывания выделяющегося аммиака предварительно добавляли формальдегид в виде формалина в количестве 15% от абсолютно сухого амидофосфата. Для ускорения отверждения в смолу среднего слоя дополнительно вводили муравьиную кислоту в количестве 0,1-0,5% по сухой смоле. Изготовленные плиты соответствуют требованиям ГОСТ 10632-89, имеют класс эмиссии по формальдегиду Е-1 и являются трудногорючим материалом с малой дымообразующей способностью.

Известен [17] также способ изготовления огнезащитных древесностружечных плит (ОДС+П), по которому в процессе производства на поверхности плиты создавали защитный слой. В качестве огнезащитного средства для создания покрытия использовали вермикулит, который смешивали с карбамидоформальдегидной смолой (КФС) и послойно формировали ковёр с таким расчётом, чтобы толщины покрытия составляла 2-6 мм. Отрицательными сторонами способа являются укрывистость древесной поверхности вертикулитом, невозможность калибровки и исследования плит

С целью проверки огнезащитного действия образцы древесины были обработаны водными растворами из ацетатного отхода [15]. Было установлено, что обработка древесины 15-25%-ными водными растворами ацетатного отхода позволяет перевести по горючести её в класс трудновоспламеняемых. Этому способствовало, по мнению исследователей, высокая теплота плавления кристаллогидрата (около 214 кДж/кг) и высокое содержание кристаллогидратной воды. Таким образом, указанным методом повышается огнезащитность природного полимера - древесины, решается задача утилизации отхода (экологический аспект) и дополнительного привлечения ресурсов (экономический аспект).

По другому способу [18] ОДС+П получали, смешивая древесные частицы с порошкообразным антипиреном. В качестве антипирена использовали модифицированный фосфогипс, который вводили в количестве 5-20% от абс. сухой древесины. Недостатком является неравномерное распределение антипирена по объёму плиты, а также потери сыпучей массы при транспортировке стружечно-клеевой смеси.

Известен [19] также способ изготовления ОДС+П, основанный на совместном введении водного раствора антипирена с карбамидоформальдегидным связующим. В качестве антипирена использовали водный раствор гидроортофосфата аммония в количестве 10% от массы древесных частиц по сухому веществу. Недостатками способа являются снижение физико-механических свойств и повышение влажности структурно клеевой смеси, что может привести к расслоению плиты.

Предложен способ получения трудногорючих ДСП и ДВП на основе амино- или фенолоформальдегидных смол, где в качестве антипирена использовались полифосфаты аммония и фосфат магния [20]. Применение данного полифосфата аммония снижает прочность и водостойкость плит, что обусловлено выделением аммиака в процессе горячего прессования. С целью улучшения условий отверждения и повышения прочности плит по данному патенту предусматривалась частичная замена полифосфата аммония на фосфат магния, что обеспечивает сокращение негативного действия выделяющегося аммиака. Однако фосфат магния практически нерастворим и по этой причине обладает низким огнестойким действием, поскольку не является кислотообразователем в условиях возгорания древесины. Кроме того, использование суспензии фосфата магния в растворе полифосфата аммония связано с технологическими сложностями из-за неустойчивости композиции. Предлагаемая пресс-композиция требует операции сушки частиц после нанесения всех композитов, в том числе и связующего. Последнее ухудшает адгезионное взаимодействие связующего с древесными частицами и требует прессования высокоплотного материала.

В другом способе изготовления ОДС+П, по которому водный раствор антипирена носили на сырые древесные частицы перед операцией сушки древесных частиц (прототип). В качестве антипирена использовали состав ФМД, который представляет собой водный раствор фосфорной кислоты, нейтрализованный карбамидом и дициандиамидом до рН 4,0-4,5. Водный раствор антипирен 25%-ной концентрации наносили на измельченные древесные частицы в количестве 15% от абс. сухого вещества. Модифицированные древесные частицы направляли в сушку и термообработку, которую проводили в одной установке. На сухие древесные частицы наносили карбамидоформальдегидное связующее. Дальнейшая технология изготовления

ОДС+П не имеет каких-либо отличий от общепринятой технологии изготовления древесностружечных плит плоского прессования.

Основные испытания, выполненные по ГОСТ 12.1 044-89, показали, что плиты относятся к материалам с малой дымообразующей способностью и умеренно опасными по токсичности продуктов горения.

Известна [21] пресс-композиция для производства трудногорючих плитных материалов, включающая наполнитель в виде древесного волокна, стружки или измельчённых частиц отходом однолетних растений, синтетическую смолу, полифосфаты аммонии и парафин, причём в качестве синтетической смолы использованы карбамидоформальдегидную или фенолоформальдегидную смолы.

Недостатком этой композиции является низкая водостойкость, большой расход дефицитных компонентов, низкая степень огнезащиты плит.

В работе Кондрашенко В.И., Фейло Б.Д. [21] была получена пресс-композиция для производства трудногорючих плитных материалов, содержащая наполнитель в виде измельчённых древесных частиц, синтетическую смолу, полифосфаты аммония и парафин, в качестве синтетической смолу содержит диановую СДЖ-Н 5,0-13,0 масс. %, полифосфаты аммония 5,0-12,0%, парафин 0,1-0,4, наполнитель.

Изобретение Фейло Б.Д., Кондрашенко В. И и других научных работников позволило повысить водостойкость и огнестойкость плитных материалов, а также сократить расход дефицитных составляющих компонентов в 2,5-3 раза.

Известен [22] способ получения огнезащитного состава для отделки целлюлозных материалов, по которому процесс проводят в две стадии. На первой стадии получают продукт взаимодействия фосфорной кислоты и мочевины, взятых в соотношении 1: 4, нагревая указанную смесь и воду при температуре 130°С в течение 20 минут.

На второй стадии полученный продукт смешивают с дополнительными количеством мочевины и водой в соотношении (масс):

продукт взаимодействия фосфорной кислоты и мочевины, взятых в соотношении 1: 4-15-30-мочевина 10-40, остальное - вода. Полученный огнезащитный состав обладает недостаточной огнестойкостью, а способ его получения экологически небезопасен из-за выделения фосфорной кислоты в атмосферу. Отмеченная проблема решена исследователями [22], которыми получен огнезащитный состав, полученный в результате следующих операций:

смешения фосфорсодержащего компонента и мочевины, нагревания смеси до расплавления, выдержки расплава и охлаждения продукта;

смешения моноаммоний фосфата или диаммоний фосфата, взятых в качестве фосфорсодержащего компонента, и мочевины в сухом состоянии;

ввода 3-5% воды от массы сухих компонентов;

сплавления смеси при нагревании до 120°С, выдержки в течение 30 минут и охлаждения продукта при продолжающемся перемешивании до его измельчения.

Этот способ прост, одностадиен, экологически чист, без сточных вод и вредных выбросов, получаемый продукт очень прост в обращении, так как порошок непылящий, сыпучий, легко растворимый в воде.

Наряду с огнезащитной пропиткой снижающей горючесть древесных материалов, возможно осуществлять применение огнезащитных покрытий [23]. Так известен огнезащитный вспучивающийся состав для покрытий, содержащий водорастворимую меламиноформальдегидную смолу, п-трет-бутил фенолоформальдегидную смолу, фосфат аммония, уротропин, орбит или манит, дициандиамид, буру, каолин, стекловолокно и воду. Описанный состав при толщине сырого покрытия 2,5 мм обеспечивает огнестойкость металлической конструкции, на которую нанесён,45-51 минут. Однако, указанный состав содержит в своем составе дицианамид, который является очень дефицитным компонентом и в настоящее время в России практически не производится из-за сложной технологии его изготовления.

Кроме того, этот состав предназначен только для защиты металлических конструкций и не приемлем для защиты деревянных конструкций.

Также известен огнезащитный вспучивающийся состав, содержащий водорастворимые мочевиноформальдегидную и мочевиномеламиноформальдегидную смолу, натриевую соль карбоксиметилцеллюлозы, поливинилацетатную эмульсию, фосфаты аммония, асбестовое волокно или каолин, стекловолокно, мочевину, пентрол и воду [23]. Этот состав не содержит дициандиамида. Покрытие, выполненное составом имеет значительное водопоглощение, что приводит к постепенному снижению адгезионных свойств в процессе эксплуатации. Так в течение 6 месяцев эксплуатации адгезия при отрыве покрытия снижается в среднем на 12%, а через 12 месяцев на 20% и составляет 3,0-4,2 кгс/см. Это сужает технологические возможности состава, ограничивая сферу его применения в металлических конструкциях, на которые действуют только статические нагрузки (колонны, фермы). Кроме того, покрытие из-за постепенного значительного снижения адгезионных свойств начинает со временем отслаиваться от металлической подложки. Как показали проведённые заявителем испытания, частичное отслаивание (2-4% поверхности) от вентиляционных коробов происходит уже через 7-8 месяцев, а через 12 месяцев происходит отслаивание покрытия на 30-35% поверхности коробов.

Ростовскими исследователями [23] получен огнезащитный вспучивающийся состав для покрытий деревянных поверхностей, содержащий в качестве аминоформальдегидной смолы водорастворимые мочевиноформальдегидную смолу или мочевиномеламиноформальдегидную смолу, поливинилацетатную смолу, фосфаты аммония, пентрол, мочевину и воду. Недостатками описанного состава являются значительный расход (480 - 740 г/м2) и недостаточно высокие огнезащитные свойства. Средняя потеря массы образца по ГОСТ 16363-76 составляет 2,6-4,3%.

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7029
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее