114817 (591718), страница 4
Текст из файла (страница 4)
Ця система забезпечує поступовий перехід від простого до дедалі складнішого: від складання простих виразів і рівнянь у процесі розв’язання задач на одну дію до складання виразів з 2-3 діями при розв’язуванні досить легких за структурою складених задач. Поступове наростання труднощів у таких вправах можливе тільки тоді, коли вчитель розуміючи завдання, що стоять перед ним, використовуватиме для цього пропоновані вправи з підручника.
Складені задачі використовуються під час ознайомлення з деякими новими поняттями, новими випадками дій, вони допомагають дітям усвідомити нові для них поняття дробу числа й інші питання курсу.
Складені задачі використовують і як наочну конкретну основу для розгляду нових понять, властивостей дій. Цією функцією визначається їх місце у загальній системі курсу: вони „вводяться тоді, коли розглядаються відповідні питання, і в такій кількості, яка потрібна для пояснення нових питань. При цьому спеціальної мети навчити дітей розв’язувати задачі двома способами не ставиться. Важливіше, щоб вони могли розв’язати її раціональним способом” [1, 21].
Інша група складених задач, що займають велике місце в підручниках для початкових класів школи, пов’язана з роботою над різними кількісними відношеннями. Такі задачі вводяться після того, як діти достатньо засвоять кількісні відношення і навчаться застосовувати свої знання під час розв’язування простих задач, які містять слова “на стільки-то (у стільки-то разів) більше (менше)” в різному контексті.
Складені задачі дають можливість продовжити і розширити та поглибити роботу, спрямовану на ознайомлення дітей з різними величинами і залежністю між ними. Група складених задач, пов’язаних з необхідністю застосувати знання зв’язку між такими величинами, як ціна, кількість, вартість, займає важливе місце в підручниках для всіх чотирьох класів [20, 29].
Застосовуючи до складених сюжетних задач алгебраїчний метод розв'язування, можна поділити їх на дві категорії. Поділ сюжетних задач на дві категорії надто широкий, але в ньому є певний практичний сенс. До першої групи віднесемо задачі на 2 дії, а до другої — на 3 і 4 дії. Такий поділ пояснюється тим, що вироблення вмінь розв'язувати задачі на 3 і більше дій спирається не тільки на знання видів простих задач і залежностей між величинами, а й на вміння учнів розв'язувати задачі на 2 дії. Часто задачі на 2 дії є «блоками», з яких складається розв'язування задач на 3 і більше дій.
Складені задачі поділяють за кількістю дій, якою розв’язується та чи інша задача. Це задача на дві, три, чотири дії. Трьома діями розв’язуються задачі, які утворилися розширенням задач на дві дії; також до цього типу належать також задачі на знаходження суми двох добутків, різниці двох добутків, різниці двох часток і т. ін. [37, 45].
Формування поняття про складену задачу та ознайомлення з процесом розв’язування складених задач здійснюється за допомогою порівняння задачі з двома запитаннями та відповідної складеної задачі; порівняння простої та складеної задач, які мають однакові умови; вибору необхідних і достатніх ознак для розпізнавання складеної задачі; підведення під поняття “складена задача”; виведення наслідків про належність або неналежність задачі до поняття “складена задача”.
Спеціально опрацьовується уміння виконувати аналітичний пошук розв’язування задачі – спочатку до задач подаються готові схеми аналізу, потім – діти повинні самостійно заповнити схему аналізу на картці з друкованою основою, а далі складають її самі. Аналогічно формується вміння розбивати складену задачу на прості та визначати порядок розв’язування простих задач.
Істотним в організації діяльності учнів на етапі ознайомлення з поняттям “складена задача” є її спрямованість не на розв’язання кожної конкретної задачі, а на оволодіння комплексом умінь, на оволодіння цим поняттям [44, 28].
На підставі визначених теоретичних основ нами удосконалена методика формування загального уміння розв’язувати складені задачі, в якій визначено мету і зміст кожного з зазначених етапів. На відміну від чинних підручників, ми пропонуємо проводити цілеспрямовану підготовку до введення поняття про складену задачу. На етапі підготовчої роботи засобом спеціальних завдань у дітей формуються уявлення: про те, що за двома певними числовими даними можна відповісти на кілька запитань; різні задачі можуть мати однакові розв’язання; неможливість відповісти на запитання задачі, якщо числових даних бракує; про необхідність вибору числових даних для відповіді на запитання задачі; про існування задач, на запитання яких не можна відповісти одразу; про існування задач, що складаються з двох простих задач, які пов’язані за змістом; про те, що аналіз може складатися з двох циклів – кожний з яких відповідає певній з двох простих задач [46, 112].
Формування загального вміння розв’язувати складені задачі реалізується за допомогою систем навчальних задач для 2 класу. Навчання розв’язувати складені задачі доцільно здійснювати на різноманітних математичних структурах задач, не зосереджуючись на відпрацюванні розв’язання задачі певної структури. Істотним у методиці ознайомлення із задачами нової математичної структури є введення їх на основі або порівняння зі схожими простими задачами, або на основі продовження сюжету простої задачі, або на основі зміни запитання простої задачі до даної умови, або на основі зміни умови або запитання складеної задачі відомої математичної структури.
Таким чином, „досліджується вплив цих змін на розв’язування задачі; задачі нової математичної структури зіставляються з задачами вже відомими, що полегшує їх засвоєння. Крім того, застосовується й такий методичний прийом, коли задача нової структури подається без зіставлення з відомими структурами, що спонукає відтворення повного складу дій, які містить загальне уміння розв’язувати складені задачі” [41, 163].
При формуванні вміння розв’язувати складені задачі в 2-му класі учням пропонуються складені задачі різноманітних математичних структур.
Наведемо систему задач, з якими учні ознайомлюються у 2 класі.
1. Задачі на знаходження невідомого зменшуваного.
2. Задачі на дві дії (поняття про складену задачу).
3. Складені задачі, які містять відношення "більше на".
4. Складені задачі, які містять відношення "менше на".
5. Задачі на знаходження третього доданка за сумою і двома відомими доданками.
6. Задачі на знаходження невідомого від'ємника.
7. Задачі на знаходження числа, яке задане подвійним різницевим відношенням.
8. Задачі на знаходження числа, яке на кілька одиниць більше (менше) від суми двох чисел [56, 6-7].
Формування й розвиток умінь в учнів 2 класу розв'язувати складені задачі забезпечуються дотриманням загальних методичних вимог у роботі над задачами, а також деякими спеціальними прийомами, що конкретизують і доповнюють загальнометодичні настанови.
Уміння розв'язувати задачу передбачає знання тих загальних правил, які сприяють раціональному підходу до пошуків розв'язання [66, 41-42]. У широкому розумінні розв'язування задачі розпочинається зі збирання необхідної інформації. Вивчають задачну ситуацію, запитання задачі, згадують або знаходять з певних джерел ті ознаки й властивості величин, про які йдеться в задачі. Потім з'ясовують залежності між даними і шуканими величинами, ознаки і властивості, які слід використовувати для знаходження відповіді на запитання. На основі цього визначають хід розв'язування. Це конструктивна (і основна) частина роботи над задачею. Друга частина — виконавча, коли роблять необхідні записи; визначають дії чи складають вираз або рівняння; здійснюють обчислення і записи відповіді; перевіряють розв'язання.
У навчанні учнів початкових класів цей порядок роботи подається у вигляді порад, що формулюються в інструкції (пам'ятці). Дає позитивні результати така система порад:
а) уважно прочитай задачу; подумай, про що йдеться в ній; з'ясуй незрозумілі слова і вирази; виділи в задачі умову і запитання;
б) подумай, що означає кожне число; який зв'язок між числами;
в) ця задача проста чи складена? Якщо складена, то спробуй розробити план розв'язування;
г) якщо план не вдалося відразу скласти, то пригадай, яку подібну задачу розв'язували раніше; розв'яжи частину задачі; чи не можна тепер знайти відповідь на основне запитання? [4, 42].
У формуванні вмінь розв'язувати задачі велике значення мають і деякі спеціальні заходи навчального та виховного характеру. Дітей необхідно орієнтувати на таку настанову: над розв'язуванням задачі треба думати, оскільки прийоми знаходження відповіді невідомі, їх потрібно знайти. Тому при опрацюванні умови учнів не слід "підганяти", вони мусять мати час на обмірковування.
Кожна нова задача не має виникати з "нічого", вона мусить спиратися на набуті вже знання і на повсякденний досвід, відповідати природній допитливості дитини. Водночас якщо задача розв'язана (засвоєна), то її слід використати для розв'язування інших задач, для відшукання простіших способів розв'язування та постановки нових перспектив.
Загалом можна сказати, що процес формування вмінь розв'язувати задачі неперервний. Учні розв'язують задачі на кожному уроці математики і в процесі виконання домашніх завдань. Формування вмінь передбачає також ознайомлення з новим видом задач, перехід від одного виду задач до іншого та зв'язок між ними, повторне розв'язування задач, різновиди творчої роботи над задачами. Розгляньмо види творчої роботи [6, 51-53].
1. Повторне розв'язування задач. Якщо задачу повторно розв'язують відразу після запису останньої дії і відповіді, то це буде момент первинного закріплення. Тут ми маємо на увазі повторне розв'язування через деякий час, тобто через кілька днів або тижнів. Цей прийом не належить безпосередньо до творчої роботи, але він відіграє певну роль при формуванні і закріпленні вмінь розв'язувати задачі.
Маючи справу із задачею вдруге, учень краще усвідомлює зв'язки між величинами, алгоритм її розв'язування. Якщо при цьому він розв'яже задачу самостійно, то вона стане вже його ''власною". Повторне розв'язування задач варто практикувати під час опитування та під час усних обчислень. Для цього добирають задачі на одну-дві дії. Один раз на місяць доцільно пропонувати учням для домашньої роботи повторно розв'язати кілька задач: одну — письмово, а решту — усно.
2. Зміна елементів задачі.
Зміна числових даних. Пропонують розв'язати задачу, аналогічну до розв'язаних на цьому чи попередніх уроках, але з іншими числовими даними. Здебільшого змінюють одне з даних. Виконуючи завдання, учні впевнюються, що задача розв'язується такими самими діями, якими й попередня. Відбувається процес узагальнення способу розв'язування. Це є головна мета прийому зміни числових даних. У деяких випадках можна запропонувати дітям змінити числові дані так, щоб задачу можна було розв'язати іншим способом.
3. Зміна запитання. Застосування цього прийому наголошує на спрямовуючій ролі запитання для вибору необхідних зв'язків, стимулює учнів до всебічного аналізу задачної ситуації. Зміну запитання використовують також для постановки нових задач, "розширення" задачі.
4. Зміна сюжету задачі. Пропонують розв'язати таку саму задачу, але з іншими величинами. При цьому учні вчаться з'ясовувати умови застосування в реальній дійсності тих чи інших залежностей.
5. Зміна деяких зв'язків. Такий прийом привертає увагу дітей до значення окремих слів і виразів у контексті задачі. Вони поступово усвідомлюють, що незначні на перший погляд зміни ведуть до істотних змін у ході розв'язування, роблять висновок про можливість зміни характеру залежностей між величинами.
Варто практикувати також поступове ускладнення умови задачі. Спочатку учням пропонують кілька змінених задач, в яких збільшується кількість числових даних, включаються додаткові зв'язки. Запитання задачі залишається без змін. Цей прийом дає змогу бачити, як ускладнення числових даних і зв'язків впливає на хід розв'язування задач.
6. Розв'язування задач різними способами. Деякі арифметичні задачі Допускають два чи кілька способів розв'язування. Такі задачі є ефективним Навчальним матеріалом, на основі якого в учнів пробуджується допитливість, самостійність мислення. Намагання знайти інший шлях розв'язування тієї самої задачі сприяє підвищенню емоційного стану школярів.
Розв'язування задач різними способами веде до розвитку вміння всебічно аналізувати задачну ситуацію. Проте тут важливий ще і сам факт існування різних способів розв'язування. Усвідомлення цього є кроком до пошуку кращого способу, що водночас призводить до встановлення нових зв'язків між величинами або використання відомих зв'язків у нових умовах.
7. Складання виразів за умовою задачі. Як творчий вид роботи над задачею можна розглянути завдання, основна мета яких полягає не у знаходженні числового результату, а у складанні числових виразів. Роль завдань, що сприяють розвитку вмінь учнів записувати деяку конкретну життєву ситуацію математичною мовою, надзвичайно велика. Особливо корисні вони як засіб підготовки дітей до розв'язування задач складанням рівняння.
8. Складання задач. Завдання на складання задач ефективні насам-перед для розвитку уявлень учнів про структуру задач та узагальнення способу їх розв'язування. Цей вид роботи корисний для досягнення інших цілей, зокрема для того, щоб виявити, як діти усвідомлюють способи розв'язування задач певного виду. Якщо учень самостійно складає задачу з певними залежностями між величинами, то він добре розуміє ці залежності І легко сприйматиме відповідний зв'язок у заданій задачі.
У спеціальних дослідженнях з методики математики і досвіду роботи самих учителів обґрунтовано доцільність застосування багатьох прийомів складання задач, кожен з яких має свою функцію. Подамо їх перелік:
складання задач на зазначену дію;
складання задач за виразом чи розв'язком;
складання задач на задану зміну величин чи залежність між величинами. Наприклад, скласти задачу про збільшення маси кроля; скласти задачу на зменшення числа в кілька разів; скласти задачу на знаходження ціни (вартості чи кількості товару; відстані, швидкості чи часу; норми витрат продуктів, урожайності тощо);















