114647 (591659), страница 7
Текст из файла (страница 7)
2.4.2 Механіка HDD
З часом швидкість обертання шпінделя зростала, підвищувалася точність позиціонування зчитуючої головки, додавалася «розумна» електроніка. Але основний принцип устрою жорстких дисків практично не змінився.
Жорсткий диск – це гранично точна електронно-механічна система. Всередині розташований шпіндель – це вісь, на яку жорстко нанизуються круглі пластини. Чим швидше маленький двигун шпінделя розкручує пластини, тим, в більшості випадків, жвавіше працює вінчестер. Для сучасних дисків характерні швидкості 5400 або 7200 обертів за хвилину. Шпінделі HDD для серверів і робочих станцій працюють швидше – на 10 і навіть 15 тисячах об/хв.
Як тільки вмикається комп'ютер, двигун починає розкручувати диски. Спочатку ненадовго активується форсований режим – вінчестер споживає максимум енергії, набираючи «крейсерську» швидкість. Працювати доводиться надзвичайно багато, без щонайменших відхилень, тому ресурс у механіки жорсткого диска величезний.
Пластин може бути декілька, а може бути всього одна: у більшості сучасних вінчестерів їх від однієї до п'яти. Виготовляються пластини з металу, покритого феромагнітним шаром завтовшки близько 10 мікрон. Раніше для цих цілей використовувався оксид заліза, сьогодні найчастіше кобальт. Всього в пластині чотири шари: перший – основа (залізо або кераміка), другий – магнітний (служить для запису інформації), третій – захисний (оберігає від розмагнічування), ну, і четвертий – особливе мастило, яке відповідає за відведення тепла і захист від корозії. Товщина захисного шару – 5 нм, а мастила – близько 2 нм.
До уваги: 1 нанометр (нм) – це одна тисячна мікрона, або ж метра.
Інформація на пластини записується у вигляді намагнічених концентричних ділянок – доріжок. Оксид заліза, або будь-яке інше феромагнітне покриття, складається з ділянок, в кожному з яких вектора магнітних моментів диполів направлені в один бік. Візуально це можна уявити як велику кількість стрілок, напрямлених строго уперед або назад. Кожна стрілка – це біт інформації, одиниця або нуль.
Зчитуюча головка диска – непростий елемент. Спеціальний моторчик (привод головки) регулює положення головки над доріжкою диска з точністю до пари мікрон. За відсутності струму головка «спить» в особливій паркувальній зоні пластини – поряд з віссю. Звичайно, в цій ділянці “млинця” інформація не записується.
Як тільки шпіндель починає розкручувати диски, створюється потік повітря, яке тисне на аеродинамічну конструкцію – важіль головки. В результаті важіль головки, форма якого нагадує крило літака, в буквальному розумінні злітає. Зчитування даних відбувається на відстані декількох мікрон від поверхні, щонайменше торкання пластини викликає непоправну втрату даних і псування самої головки. Тому шпінделю і доводиться весь час обертатися.
Максимально наблизити головку до зчитуючої поверхні не так давно вдалося інженерам компанії Fujitsu, які розробили спеціальний змащувальний шар. Теоретична відстань між головкою і пластиною зменшилася до 8 нм. Чим ближче головка до пластини, тим меншого розміру магнітні ділянки можна використовувати. Отже, на одну концентричну доріжку поміститься більше біт інформації [5].
Якщо в жорсткому диску декілька «млинців», над кожним ширятиме власна головка. Всі головки переміщаються одночасно, і це не дивно, адже пластини нанизані на єдиний привод. Переміщатися головка в процесі зчитування може тільки горизонтально, по дузі.
У одному дюймі пластини знаходиться близько восьми тисяч доріжок. Для наведення головки на доріжку в даний час використовується акустичний мотор. Він складається з двох потужних магнітів і дротяної котушки. Конструкція нагадує звичайний динамік – звідси і назва «Акустичний мотор».
Котушка під дією струму створює електромагнітне поле, унаслідок чого починає зміщуватися у бік магнітів. Упевнитися, наскільки точно встановилася головка над пластиною, вінчестер може за допомогою зворотного зв'язку. Прочитуючи спеціальні службові мітки, записані на “млинці” в заводських умовах, привод головки повідомляє електроніку вінчестера про своє місцезнаходження. У разі потреби головка робить ще одну спробу добратися до мети. І тут дуже важливий параметр часу пошуку (seek time) – час, за який привод виводить головку на доріжку.
Для зчитування інформації досить часто використовуються індуктивні тонкоплівкові головки. Принцип дії схожий з магнітною головкою касетного магнітофона. Головка вінчестера проходить над «стрілками», які своїм магнітним полем генерують в обмотці головки електричний струм. Сигнал, що поступив, посилюється, пропускається через фільтри і потім розшифровується електронною «начинкою» вінчестера.
Сьогодні створюються якісніші головки. Один з нових типів активно застосовує компанія Seagate. Це магніто-резистивні головки, які використовують фізичний ефект, відкритий лордом Уїльямом Кельвіном в 1857 році. А саме, що магнітне поле міняє опір металевого провідника. Коли магніторезистивна головка потрапляє в магнітне поле, сила струму в ланцюзі змінюється, що і дозволяє відрізнити «одиницю» від «нуля». Зчитаний таким чином біт інформації тут же потрапляє в електронну схему. Основна перевага нового типу головок – можливість щільніше записувати інформацію, тому що роздільна здатність магніторезистивних головок вища, ніж у індуктивних. Крім того, електричний сигнал магніторезистивних головок чистий і практично не потребує додаткової фільтрації. Нарешті, нові головки не чутливі до швидкості обертання пластин, тоді як точність зчитування в індуктивних елементах залежить від швидкості проходження головки над поверхнею пластини.
Єдиний гнучкий елемент всієї конструкції жорсткого диска – це провідник, який пов'язує важіль головки з електронікою. Важіль весь час перебуває в русі, кидається від однієї доріжки до іншої, тому дріт повинен бути міцним, але таким, що не сковує рухи важеля [5].
2.4.3 Електроніка HDD
Як відомо, розбирати вінчестери зазвичай строго не рекомендується. Адже відстань між головкою (рис. 2.16) і пластиною – декілька мікрон, і достатньо всього однієї порошинки, щоб зіпсувати складне устаткування. А відновлення розгерметизованого жорсткого диска коштує у декілька разів дорожче, ніж покупка нового, і навіть сервісні центри зазвичай обмежуються тільки порятунком інформації.
Рисунок 2.16 – Головка яка зчитує: розміри передньої частини головки, яка зчитує – 0,3×1 мм. У центрі – нанесена літографією мідна котушка, яка використовується для запису даних. Пластини з боків виготовлені із золота
Електроніка вінчестера представлена на печатній платі (текстоліті) з нижнього боку пристрою. Тут знаходиться справжнісінький мініатюрний комп'ютер: центральний процесор, пам'ять і цифровий сигнальний процесор (Digital Signal Processor), що відповідає за сигнали читання/запису. Працює вінчестер під управлінням власної програми, записаної в мікросхему ПЗП або в службові ділянки жорсткого диска.
Спочатку запитані комп'ютером дані прочитуються з пластини, потім поступають в кеш-пам'ять і тільки потім прямують в ОЗП комп'ютера. На швидкодію вінчестера впливає швидкість обертання шпінделя, процесор і об'єм пам'яті. Бувають екзотичні випадки, коли жорсткі диски з 5400 об/хв працюють швидше, ніж моделі з 7200 об/хв, але це скоріше виключення з правил.
Об'єм буфера коливається в межах від 2 до 16 Мбайт. Чим більше пам'яті, тим більше даних головка може зчитати на випередження [5].
2.4.4 Різноманітність видів HDD
Вінчестери можна класифікувати за шириною. Форм-фактор 3,5 дюйма – стандарт для настільних систем. Жорсткі диски цього типу мають найбільшу продуктивність і місткість.
2,5-дюймові моделі традиційно застосовуються в ноутбуках, автомобільних ПК і різній побутовій техніці. Радіус «млинців» там менше, відповідно, і інформації міститься менше. Що ж до швидкості обертання шпінделя, вона тільки недавно наблизилася до швидкостей настільних моделей і складає 7200 об/хв. Місткість – до 500 Гбайт.
Існують також жорсткі диски (рис. 2.17) форм-факторів 1,8, 1 і 0,8 дюймів. Такі вінчестери не можуть похвалитися місткістю і швидкістю, зате частенько знаходять застосування в МР3-плеєрах, ультра портативних ноутбуках і переносних зовнішніх дисках.
Зовнішніми жорсткими дисками можуть бути вінчестери будь-якого форм-фактора. Вони випускаються з інтерфейсами USB 1.1/2.0, FireWire і eSATA. Основні їх переваги – мобільність і легкість підключення до ПК. Операційна система сама визначає диск і миттєво дозволяє працювати з ним. Мінус же більшості зовнішніх вінчестерів – невисока швидкість: приблизно у два рази нижче, ніж у вбудованих аналогів [5].
Рисунок 2.17 – Жорсткий диск у розібраному вигляді; якщо ви бачите важіль головки, шпіндель і пластину, це означає, що вашому жорсткому диску вже нічого не допоможе – він розгерметизований
Канал передачі інформації зазвичай обмежується інтерфейсами USB і FireWire. Але іноді швидкодія мобільних вінчестерів явно нижче із-за технологій захисту пластин від трясіння.
Внутрішні жорсткі диски, як для ноутбуків, так і для настільних ПК, обладнані або паралельним інтерфейсом PATA, або послідовним SATA. Перший відомий також як IDE і поки що присутній у всіх сучасних комп'ютерах. Але зараз стандарт вже вичерпав себе, і його активно витісняє SATA, пропонуючи в потенціалі швидкість до 300 МБ за секунду проти максимальних 133 Мбайт/с по каналу IDE.
З'єднується жорсткий диск з материнською платою двома кабелями. Один з них подає напругу, інший, інтерфейсний, відповідає за обмін даними. На відміну від IDE-вінчестерів, SATA працюють з напругою 3,3, 5 і 12 В замість 5 В. Новий тип інтерфейсних кабелів включає всього сім дротів, тоді як стандарт IDE вимагав 80-жильного дроту.
Паралельний інтерфейс РАТА здатний приймати на один порт два вінчестери. В цьому випадку номінальна швидкість, наприклад, 133 Мбайт/с, ділиться на два. З SATA цей номер поки не пройде. Щоб підключити два жорсткі диски, потрібно два незалежні порти (у так званому SATA 2.5 вже можна підчіплювати декілька дисків на канал). Кожен вінчестер отримує повноцінний канал обміну даних і не втрачає в швидкості. Відпадає і необхідність призначати жорстким дискам статусу master (той, що веде), і slave (ведений), що позбавляє від багатьох проблем, пов'язаних з сумісністю різних вінчестерів.
Це цікаво: теоретична швидкість інтерфейсу, як PATA, так і SATA, ще ніколи не вимагалася повною мірою. Навіть найновіший вінчестер навряд чи може задіювати 30 % пропускної спроможності SATA [5].
2.4.5 Гучні імена виробників HDD
Як відомо, компанія IBM, що свого часу була лідером на ринку жорстких дисків, до кінця дев'яностих розгубила минуле завзяття. Численні збої підірвали довіру, і IBM була вимушена продати свій бізнес. Придбала спадок компанія Hitachi.
У комп'ютерних магазинах сьогодні найчастіше доводиться бачити моделі Western Digital, Seagate, Hitachi і Samsung. Компанія Seagate випускає недорогі жорсткі диски з високою продуктивністю. На ринку цей виробник займає лідируюче положення і недавно скупував одного з конкурентів – компанію Maxtor. За статистикою саме вінчестери Seagate мають в Росії найбільший попит.
Продукція Western Digital славиться швидкодією, за яку, втім, доведеться платити. Справи компанії йдуть успішно, і Western Digital упевнено тримається на плаву.
До вінчестерів Samsung недавно відносилися скептично із-за їх невисокої надійності і низької продуктивності. Але сьогодні їх продукція вже не поступається конкурентам. Що стосується Hitachi, то і у неї справи йдуть непогано. Жорсткі диски не б'ють рекордів швидкості, але забезпечують високу стабільність.
Продукція компаній досить рівна в плані співвідношення ціна/якість. Хіба що зустрічаються окремі невдалі моделі, так що, підібравши симпатичну позицію в прайс-листі, не полініться зібрати про неї інформацію в Інтернеті [5].
2.4.6 Перпендикулярні перспективи запису
Щільність запису на пластини вінчестерів підходить до своєї межі. Як би низько виробники не опускали зчитуючу головку до поверхні “млинця”, до нескінченності зменшувати розмір магнітних ділянок неможливо. На певній стадії диполі магнітних ділянок починають самодовільно змінювати напрям магнітних ліній, і дані в цьому випадку безповоротно втрачаються.
Щоб вдихнути нові сили в жорсткі диски, інженери звернулися до давно відомої технології перпендикулярного магнітного запису, яку активно досліджували в 70-80-х роках минулого століття. Сенс її полягає в тому, щоб вектори (раніше згадані «стрілки») не лежали в площині пластини, а були перпендикулярні їй. При цьому магнітні ділянки займають менше місця, і до того ж не міняють напряму під дією супермагнетизма, оскільки різнойменні полюси не напрямлені один до одного. Інновація була навіть випробувана, що привело до випуску 2,88-мегабайтних «перпендикулярних» дискет. Правда, їх вартість була непомірною, і ємкі дискети не прижилися.
Для роботи з новими “млинцями” потрібні головки абсолютно іншої конструкції. Склад магнітного шару пластини також зазнав зміни: тепер це двошарова антиферомагнітна підкладка для стабільності магнітного поля і шар запису, який складається із сплавів кобальту, платини і хрому.
Жорсткі диски з перпендикулярним записом форм-факторів 3 і 2,5 дюймів вже поступили в продаж [5].
2.4.7 SSD проти HDD
Майбутнє жорстких дисків не безхмарне. У спину дихають твердотільні накопичувачі (SSD, solid-state disk), які побудовані на мікросхемах незалежної флеш-пам'яті NAND. Компанія Samsung вже запустила виробництво 32 Гбайт SSD у форм-факторі 2,5-дюймових вінчестерів. Зчитування даних з флеш-пам'яті відбувається в три рази швидше, ніж із звичайних пластин жорстких дисків, а запис – в півтора рази швидше.
Переваги твердотільних накопичувачів очевидні – вони легкі, невимогливі до живлення і не містять механічних деталей. А це і несприйнятливість до трясіння, і повна безшумність, і несхильність до магнітних полів. Проблем з сумісністю немає – SSD-накопичувачі підключаються до знайомих інтерфейсів SATA або РАТА.
Єдина перешкода до розповсюдження нової технології – вартість. Сьогодні 32 Гбайт SSD Samsung обійдеться в 1000$. Але вартість модулів NAND падає з кожним місяцем, так що вже через пару років ми напевно розпрощаємося з «механічним» жорстким диском, як би не було його шкода.