114035 (591561), страница 4

Файл №591561 114035 (Роль и место физических методов исследования при изучении некоторых разделов химии высокомолекулярных соединений в школе и в вузе) 4 страница114035 (591561) страница 42016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Результаты испытаний на удар падающим грузом, например, по методу Гарднера или изогнутой плитой, зависят от геометрии падающего груза и опоры. Их можно использовать только для определения относительного ранжирования материалов. Результаты испытаний на удар не могут считаться абсолютными, кроме случаев, когда геометрия испытательного оборудования и образца соответствуют требованиям конечного применения. Можно ожидать, что относительное ранжирование материалов по двум методом испытаний будет совпадать, если характер разрушения и скорости удара одинаковы [12, 14-17].

Интерпретация результатов испытаний на удар - сравнение методов ISO и ASTM

Ударные характеристики могут в большой степени зависеть от толщины образца и ориентации молекул. Разные толщины образцов, используемых в методах ISO и ASTM, могут весьма значительно повлиять на значения прочности при ударе. Изменение толщины с 3 мм на 4 мм может даже привести к переходу характера разрушения от вязкого к хрупкому из-за влияния молекулярной массы и толщины образца с надрезом при использовании метода Изода, как это продемонстрировано для поликарбонатных смол. На материалы, уже показывающие хрупкий характер разрушения при толщине 3 мм, например, материалы с минеральными и стекловолоконными наполнителями, изменение толщины образца не влияет. Такими же свойствами обладают материалы с модифицирующими добавками, увеличивающими ударную прочность.

Влияние толщины и молекулярной массы образца с надрезом на результаты ударных испытаний поликарбонатных смол по Изоду

Ударная прочность по Изоду ISO 180 (ASTM D256)

Рис. 7 Лабораторный прибор для измерения ударной прочности по Изоду

Испытания образцов с надрезом на ударную прочность по Изоду стали стандартным методом для сравнения ударной прочности пластиков. Однако результаты этого метода испытаний мало соответствуют реакции формованного изделия на удар в реальной обстановке. Из-за разной чувствительности материалов к надрезу этот метод испытаний позволяет отбраковывать некоторые материалы. Несмотря на то, что результаты этих испытаний часто запрашивались как значимые меры ударной прочности, эти испытания проявляют тенденцию к измерению чувствительности материала к надрезу, а не к способности пластика выдерживать удар. Результаты этих испытаний широко используются как справочные для сравнения ударных вязкостей материалов. Испытания образцов с надрезом на ударную прочность по Изоду лучше всего применимы для определения ударной прочности изделий, имеющих много острых углов, например ребер, пересекающихся стенок и других мест концентрации напряжений. При испытаниях на ударную прочность по Изоду образцов без надреза, применяется та же геометрия нагружения, за исключением того, что образец не имеет надреза (или зажат в тисках в перевернутом положении). Испытания этого типа всегда дают более высокие результаты по сравнению с испытаниями образцов с надрезом по Изоду из-за отсутствия места концентрации напряжений.

Ударной прочностью образцов с надрезом по методу Изода является энергия удара, затраченная на разрушение надрезанного образца, деленная на исходную площадь поперечного сечения образца в месте надреза. Эту прочность выражают в килоджоулях на квадратный метр: кДж/м2. Образец вертикально зажимают в тисках ударного копра.

Обозначения ISO отражают тип образца и тип надреза:

ISO 180/1A обозначает тип образца 1 и тип надреза А. Как можно увидеть на рисунке ниже, образец типа 1 имеет длину 80 мм, высоту 10 мм и толщину 4 мм.

ISO 180/1O обозначает тот же образец 1, но зажатый в перевернутом положении (указываемый как "ненадрезанный").

Образцы, используемые по методу ASTM, имеют подобные размеры: тот же радиус скругления у основания надреза и ту же высоту, но отличатся по длине - 63,5 мм и, что более важно, по толщине - 3,2 мм.

Результаты испытаний по ISO определяют как энергию удара в джоулях, затраченную на разрушение испытуемого образца, деленную на площадь поперечного сечения образца в месте надреза. Результат выражают в колоджоулях на квадратный метр: кДж/м2.

Результаты испытаний по методу ASTM определяют как энергию удара в джоулях, деленную на длину надреза (т.е. толщину образца). Их выражают в джоулях на метр: Дж/м. Практический коэффициент пересчета равен 10: т.е. 100 Дж/м равно приблизительно 10 кДж/м2.

Разная толщина образцов может отразиться на различных интерпретациях "ударной прочности", как показано отдельно.

Образцы для измерения ударной прочности

Рис. 8. Метод измерения ударной прочности по Изоду

Ударная прочность по Шарпи ISO 179 (ASTM D256)

Основным отличием методов Шарпи и Изода является способ установки испытуемого образца. При испытании по методу Шарпи образец не зажимают, а свободно устанавливают на опору в горизонтальном положении.

Обозначения ISO отражают тип образца и тип надреза:

ISO 179/1C обозначает образец типа 2 и надрез типа CI;

ISO 179/2D обозначает образец типа 2, но ненадрезанный.


Образцы, используемые по методу DIN 53453, имеют подобные размеры. Результаты по обоим методам ISO и DIN определяются как энергия удара в джоулях, поглощенная испытуемым образцом, деленная на площадь поперечного сечения образца в месте надреза. Эти результаты выражаются в килоджоулях на квадратный метр: кДж/м2.

Методика изучения радиотермолюминесценции (РТЛ) полимеров

Многие неорганические и органические вещества, подвергнутые при низких температурах (обычно при 77 К) проникающей радиации, при последующем разогреве начинают светиться, т.е. спектр их высвечивания находится в видимой области.

Применение метода РТЛ включает в себя три операции: облучение исследуемого образца при низкой температуре, последующий плавный разогрев облученного образца и одновременно с ним регистрацию свечения. При облучении веществ происходит стабилизация электронов и "дырок" в ловушках, которыми являются дефекты их структуры. Рекомбинация зарядов приводит к люминесценции облученного вещества. В зависимости от способа активации зарядов различаются термо-, фото- и другие виды люминесценции. На температурной зависимости интенсивности РТЛ могут быть один или несколько максимумов, что указывает на существование одного или нескольких типов ловушек в данном облученном веществе. Для неорганических веществ эти максимумы в общем случае не связаны с их молекулярной подвижностью.

Характерной особенностью РТЛ органических веществ и в первую очередь полимеров, является то, что максимумы свечения на кривой РТЛ проявляются в тех интервалах температур, где имеют место различные кинетические и структурные переходы. Посредством сравнения значений температур максимумов РТЛ и релаксационных переходов, обнаруженных другими методами (механических и диэлектрических потерь, термомеханических кривых и ЯМР), было показано, что они проявляются в областях размораживания подвижности различных кинетических единиц. Такое совпадение максимумов свечения РТЛ с областями кинетических и структурных переходов в полимерах дает основание считать, что акты рекомбинации зарядов осуществляются за счет размораживания теплового движения кинетических единиц, на которых находятся электронные ловушки или центры свечения. При этом время жизни электрона в ловушке будет определяться временем релаксации кинетической единицы, на которой находятся стабилизированные электроны.

Для каждого полимера характерна вполне определенная кривая высвечивания. Положение максимумов РТЛ зависит от дозы предварительного облучения, с увеличением дозы в результате сшивания полимера температура максимума смещается в сторону высоких температур. Для совместимых смесей полимеров характерно наличие лишь одного максимума РТЛ при температуре стеклования смеси, причем его положение меняется при изменении соотношения компонентов. Кривые РТЛ гетерогенных смесей полимеров представляют собой сумму кривых высвечивания отдельных компонентов, взятых в определенном соотношении. Все это свидетельствует о том, что РТЛ облученных полимеров в первую очередь определяется процессами молекулярного движения. Изучая РТЛ полимеров, удается определить не только температуры структурных и кинетических переходов, но и получить сведения об их характере и об активационных параметрах процессов молекулярного движения.

С помощью метода РТЛ удается надежно зарегистрировать изменение температуры стеклования даже тогда, когда оно составляет всего 2-3 градуса. К достоинствам метода РТЛ относится, несомненно, и то, что образец полимера может быть в любом виде [14, 17].

2.6 Световая (оптическая) микроскопия

Этот метод состоит в том, что исследуемый объект рассматривается в оптическом микроскопе в проходящем или отраженном свете, и в плоскости изображения объективной линзы микроскопа формируется увеличенное изображение предмета.

Обычное наблюдение полимерных образцов в оптическом микроскопе «на просвет» в неполяризованном свете малоинформативное из-за малой разности оптических плотностей различных структурных элементов. Положение существенно улучшается при использовании поляризованного света, поскольку кристаллизация и ориентация полимеров приводят к появлению эффекта двойного лучепреломления.

Длина волн видимого света составляет 0,4 – 0,8 мкм. Поэтому оптические методы позволяют различать структурные элементы размером от нескольких до многих сотен микрон.

Метод оптической микроскопии обычно не требует специального препарирования исследуемых объектов. Наиболее удобны для изучения в проходящем свете образцы в виде тонких пленок или срезов с массивных блоков.

Методы оптической микроскопии используются при исследовании структурных образований в кристаллических полимерах, для наблюдения за структурными превращениями при кристаллизации и исследования кинетики этого процесса, контроля за макроскопической структурой материала, полученного в различных технологических условиях, а также наблюдения за структурными превращениями под влиянием различных взаимодействий (деформационных, тепловых и т.п.).

2.7 Электронная микроскопия

В электронных микроскопах источником излучения служит катод, испускающий пучок электронов (электронный луч). Перемещению электронов в пространстве соответствуют колебания определенной длины волны, зависящей от ускоряющего напряжения.

Как и в световом микроскопе, в электронном микроскопе можно наблюдать увеличенное изображение объекта, которое, однако, нельзя рассматривать как снимок, сделанный простым фотоаппаратом. Для правильной интерпретации электронно-микроскопических снимков (изображений) необходимо знать законы взаимодействия электронов с исследуемым веществом.

Методом электронной микроскопии исследуют очень тонкие слои вещества порядка 1000А0 и меньше. Это могут быть очень тонкие пленки или срезы Структуру поверхности блочных материалов или поверхностей разлома исследуют с помощью метода рекчик, т.е. прозрачных отпечатков с поверхности исследуемого образца.

Возникновение контраста на электронно-микроскопических снимках связано с различной рассеивающей способностью ядер разных атомов по отношению к электронному пучку.

Атомы тяжелых металлов наиболее сильно рассеивают электроны, поэтому часто для увеличения контраста полимерных объектов их оттеняют тяжелыми металлами, такими, как хром, палладий, золото, платина и т.п.

Важными ограничением метода электронной микроскопии является его статический характер, обусловленный трудностями приготовления образцов, и возможность существенных ошибок в определении структуры.

2.8 Рентгеноструктурный анализ

Рентгеноструктурный анализ основан на использовании рентгеновского излучения, длина волн которого лежит в интервале от 0,1 до 100А0. На практике для исследования полимеров наиболее широко используют антикатод рентгеновской трубки, изготовленной из меди. Из испускаемого излучения никелевым фильтром отбирается - линия с длиной волны 1,54 А0.

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7026
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее