86125 (589934), страница 4

Файл №589934 86125 (Элементарное изложение отдельных фрагментов теории подгрупповых функторов) 4 страница86125 (589934) страница 42016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Теорема доказана.

Пересечение всех конечных многообразий, содержащих данную группу , называется конечным многообразием, порожденным . Из теоремы 20.8 вытекает

Теорема 20.9. Пусть - конечная группа и - конечное многообразие, порожденное . Тогда в том и только в том случае является элементарной абелевой -группой, когда решетка является цепью.

Пусть и - подгрупповые -функторы. Определим произведение при помощи следующего правила

Понятно, что подгрупповой -функтор является замкнутым тогда и только тогда, когда . Мы используем символ для обозначения произведения , в котором имеется сомножителей.

Пусть - произвольное непустое множество простых чисел. Подгруппа группы называется -холловской, если ее индекс в не делится ни на одно число из , а среди простых делителей ее порядка нет ни одного не входящего в . Символом обозначают множество всех простых чисел, отличных от .

Конечная группа называется нильпотентной, если выполняется одно из эквивалентных условий:

а) все силовские подгруппы нормальны в ;

б) все максимальные подгруппы (т.е. коатомы решетки ) нормальны в .

Лемма 24.9 Пусть - наследственный гомоморф конечных групп. Пусть - замкнутый подгрупповой функтор на Пусть - нильпотентная группа в и Предположим, что , где - простое число. Пусть - нильпотентная группа в такая, что и Тогда

Доказательство. Пусть - холловская -подгруппа в и Предположим, что Тогда

и поэтому , где - силовская -подгруппа в . Тогда противоречие. Следовательно, и поэтому найдется максимальная подгруппа в така1я, что и . Так как - нильпотентная группа, то и поэтому согласно лемме 24.6, мы имеем Теперь мы докажем, что Если то по определению подгруппового функтора мы сразу имеем . Пусть и пусть - максимальная подгруппа в такая, что Тогда и так как

Так как мы видим, что и поэтому Следовательно, . Если где - максимальная подгруппа в то Но и поэтому мы видим, что Лемма доказана.

Лемма 24.10 Пусть - наследственный гомоморф конечных нильпотентных групп и Пусть Если - идемпотент в , удовлетворяющий условию и , где тогда

Доказательство. Предположим, что Тогда найдется группа с Мы можем предполагать, что - группа минимального порядка с этим свойством. Следовательно, содержит подгруппу такую, что , но Ясно, что Пусть - максимальная подгруппа в такая, что и пусть Так как для каждого , мы имеем Понятно, что и поэтому Так как группа нильпотентна, то и поэтому по лемме 24.6, Так как мы видим, что для всех Следовательно, и поэтому по выбору группы , мы имеем Так как по условию то найдется такая группа , что для некоторой ее подгруппы мы имеем и Используя теперь лемму 24.9, мы видим, что и поэтому

Полученное противоречие показывает, что Но согласно нашему предположению, мы имеем Следовательно,

Пусть - решетка. Подмножество называется антицепью в если для любых различных элементов и из , мы имеем и Если - антицепь в такая, что для любой другой антицепи , тогда кардинальное число называется шириной решетки .

Если - произвольная совокупность групп, то символом обозначается множество всех простых делителей порядков групп из .

Теорема 24.11 Пусть - конечное многообразие групп. И пусть каждая группа в конечная. Тогда ширина решетки всех идемпотентов в конечна и в том и только в том случае, когда состоит из нильпотентных групп и

Доказательство. Прежде мы предположим, что формация нильпотентна и , где Пусть Предположим, что имеется замкнытый функтор в такой, что и для Мы покажем, что Действительно, если , тогда найдется группа такая, что для некоторой подгруппы из , мы имеем Мы можем считать, что - группа минимального порядка с этим свойством. Понятно, что Пусть - такая максимальная подгруппа в , что . Согласно условию, класс является наследственным. Следовательно, , и поэтому ввиду выбора группы , мы имеем Пусть Так как то найдется группа такая, что Таким образом, для некоторой подгруппы мы имеем и поэтому по лемме 4.9, Это означает, что противоречие. Следовательно, Значит, если - замкнутый функтор в и то для некоторого мы имеем По лемме мы видим, что ширина решетки равна

Теперь мы предположим, что ширина решетки конечна и Пусть Если и тогда и и поэтому Это означает, что - конечное множество. Теперь мы покажем, что - класс нильпотентных групп. Предположим, что имеет ненильпотентную . Пусть и пусть - силовская -подгруппа в . Тогда Так как - ненильпотентная группа, то для некоторого имеет место . Хорошо известно (см., например, [], теорема), что не является субнормальной подгруппой в , и поэтому где (см. пример 21.4). С другой стороны, мы видим, что и поэтому Это показывает, что антицепь с противоречие. Таким образом, - формация, состоящая из нильпотентных групп. А по лемме 4.10, Теорема доказана.


Заключение

Отметим, что теория подгрупповых функторов уже нашла много примениний при иследовании внутреннего строения конечных групп [1, 2, 3, 4]. Но еще один аспект применения подгупповых функторов состоит в сопоставлении группе некоторой решетки подгупповых функторов свойства которой тесно связаны со свойствами самой группы. Это позволяет использовать строение группы в зависимости от условий налогаемых на соответствующую решетку подгупповых функторов.

Следует отметить также, что используя понятие подгуппового функтора можно строить новые типы решеток, что указывает на полезность этого понятия и для теории решеток.


Список использованных источников

11[] Скиба А.Н. Алгебра формаций. - Мн.: Беларуская навука, 1997.

22[]Скиба А.Н. Решетки и универсальные алгебры. Учебное пособие. - Гомель: Гомельский гос. ун--т, 2002.255 с.

33[] Селькин М.В. Максимальные подгруппы в теории классов конечных групп. - Мн.: Беларуская навука, 1997.

44[] Каморников С.Ф., Селькин М.В. Подгрупповые функторы в теории классов конечных групп. - Гомель: Гомельский гос. ун--т, 2001.238 с.

55[] Монахов В.С. Введение в теорию групп. Тексты лекций по курсу "Алгебра и теория чисел". - Минск: Белорусский гос. ун--т, 1990.72 с.

66[] Холл М. Теория групп. - М.: ИЛ, 1962.468 с.

77[] Шеметков Л.А., Скиба А.Н. Формации алгебраических систем. - М.: Наука, 1989.253 с.

Характеристики

Тип файла
Документ
Размер
12,32 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6451
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее