86068 (589924), страница 2

Файл №589924 86068 (Топологическая определяемость верхних полурешёток) 2 страница86068 (589924) страница 22016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

(*). < , > - дистрибутивна и , то для элементов , , справедливо равенство :

значит, полурешётка < , > - дистрибутивна.

< , > - дистрибутивна. Пусть решётка содержит диамант или пентагон (рис.2).

1) Пусть решётка содержит пентагон, . Нужно найти такие элементы и , чтобы выполнялось равенство . Но множество элементов меньших b или c состоит из элементов {0,b,c} и их нижняя граница не даст a. Получили противоречие с тем, что < , > - дистрибутивна. Значит, наше предположение неверно и решётка не содержит пентагона.

2) Пусть решётка содержит диамант, . Аналогично, множество элементов меньших b или c состоит из элементов {0,b,c}, их нижняя граница не даст a. Значит, решётка не содержит диаманта.

Можно сделать вывод, что решётка дистрибутивна.

(**). Имеем , поэтому , где (по определению дистрибутивной полурешётки). Кроме того, является нижней границей элементов и .

Рассмотрим идеалы, содержащие элемент и - и . Тогда Ø ,т.к. , нижняя граница элементов a и b, содержится там.

Покажем, что I(L) – решётка, т.е. существуют точные нижняя и верхняя грани для любых A и B.

Покажем, что совпадает с пересечением идеалов A и B. Во-первых, - идеал. Действительно, и и Во-вторых, пусть идеал и . Тогда , т.е. - точная нижняя грань идеалов A и B, т.е. .

Теперь покажем, что совпадает с пересечением всех идеалов , содержащих A и B. Обозначим . Поскольку для для , то C идеал. По определению C он будет наименьшим идеалом, содержащим A и B.

(***). Пусть – верхняя дистрибутивная полурешётка. Покажем, что

.

Пусть , т.е. (рис.3), для некоторых

Понятно, что . По дистрибутивности, существуют такие, что . Т.к. A – идеал, то , потому что

. Аналогично, . Т.е. . Точно также, . Если , то легко показать, что .

Доказали, что - идеал. Очевидно, он является верхней гранью идеалов A и B. Если C содержит A и B, то C будет содержать элементы для любых , т.е. Поэтому , поскольку является верхней гранью идеалов A и B и содержится в любой верхней грани.

Теперь покажем, что выполняется равенство:

.

. Пусть , где , . Т.к. , то , откуда и следовательно . Аналогично, , значит,

. Пусть ,где .

Отсюда следует дистрибутивность решётки .

– дистрибутивная решётка, . Теперь рассмотрим идеалы, образованные этими элементами:

( ,будет нижней границей для ). Поэтому , что и доказывает дистрибутивность полурешётки . ■

2. Стоуново пространство.

Определение: Подмножество верхней полурешётки называется коидеалом, если из неравенства следует и существует нижняя граница множества , такая, что .

Определение: Идеал полурешётки называется простым, если и множество является коидеалом.

В дальнейшем нам потребуется лемма Цорна, являющаяся эквивалентным утверждением аксиоме выбора.

Лемма Цорна. Пусть A – множество и X – непустое подмножество множества P(A). Предположим, что X обладает следующим свойством: если C – цепь в < >, то . Тогда X обладает максимальным элементом.

Лемма 2: Пусть – произвольный идеал и – непустой коидеал дистрибутивной верхней полурешётки . Если , то в полурешётке существует простой идеал такой, что и .

Доказательство.

Пусть X – множество всех идеалов в L,содержащих I и не пересекающихся с D. Покажем, что X удовлетворяет лемме Цорна.

Пусть Cпроизвольная цепь в X и Если , то для некоторых Пусть для определённости . Тогда и , т.к. - идеал. Поэтому . Обратно, пусть , тогда , для некоторого Получаем , откуда .

Доказали, что Mидеал, очевидно, содержащий I и не пересекающийся с D, т.е. . По лемме Цорна X обладает максимальным элементом, т.е. максимальным идеалом P среди содержащих I и не пересекающихся с D.

Покажем, что P – простой. Для этого достаточно доказать, что L\P является коидеалом. Пусть L\P и . Поскольку , то , иначе в противном случае по определению идеала. Следовательно, . Если , то и пересекающихся с D в силу максимальности P. Получаем и для некоторых элементов . Существует элемент такой, что и , по определению коидеала, следовательно и для некоторых Заметим, что и не лежат в P, т.к. в противном случае .

Далее, , поэтому для некоторых и . Как и прежде . Кроме того , поэтому - нижняя грань элементов a и b, не лежащая в P.

В дальнейшем, через будем обозначать дистрибутивную верхнюю полурешётку с нулём, через множество всех простых идеалов полурешётки .

Множества вида представляют элементы полурешётки в ч.у. множестве (т.е. ). Сделаем все такие множества открытыми в некоторой топологии.

Обозначим через топологическое пространство, определённое на множестве . Пространство SpecL будем называть стоуновым пространством полурешётки L.

Лемма 3: Для любого идеала I полурешётки L положим:

Тогда множества вида исчерпывают все открытые множества в стоуновом пространстве SpecL.

Доказательство.

Нужно проверить выполнение аксиом топологического пространства.

1) Рассмотрим идеал, образованный 0. Тогда

,

но 0 лежит в любом идеале, а значит .

2) Возьмём произвольные идеалы и полурешётки и рассмотрим

Пусть . Тогда существуют элементы a и Отсюда следует, что , где L\P – коидеал. По определению коидеала существует элемент d такой, что и , значит, . Т.к. , следовательно, . Получаем, что .

Обратное включение очевидно.

2) Пусть - произвольное семейство идеалов. Через обозначим множество всех точных верхних граней конечного числа элементов, являющихся представителями семейства . Покажем, что - идеал. Пусть , тогда , где для некоторого идеала . Тогда лежит в идеале , следовательно, и , т.е. . Обратно очевидно.

Доказали, что - идеал. Теперь рассмотрим произвольное объединение.

Лемма 4: Подмножества вида пространства можно охарактеризовать как компактные открытые множества.

Доказательство.

Действительно, если семейство открытых множеств покрывает множество , т.е. , то Отсюда следует, что для некоторого конечного подмножества , поэтому . Таким образом, множество компактно.

Пусть открытое множество r(I) компактно, тогда и можно выделить конечное подпокрытие для некоторых .

Покажем, что I порождается элементом .

Предположим, что это не так, и в идеале I найдётся элемент b не лежащий в . Тогда [b) – коидеал, не пересекающийся с . По лемме 2 найдётся простой идеал P содержащий и не пересекающийся с [b). Получаем, , т.к. (т.е. ), но , т.к. , противоречие. Следовательно, компактным открытым множеством r(I) будет только в случае, если - главный идеал.■

Предложение 5: Пространство является - пространством.

Доказательство.

Рассмотрим два различных простых идеала и Q. Хотя бы один не содержится в другом. Допустим для определённости, что . Тогда r(P) содержит Q, но не содержит P, т.е. SpecL является - пространством. ■

Теорема 6: Стоуново пространство определяет полурешётку с точностью до изоморфизма.

Доказательство.

Нужно показать, что две полурешётки и изоморфны тогда и только тогда, когда пространства и гомеоморфны.

Очевидно, если решётки изоморфны, то пространства, образованные этими полурешётками будут совпадать.

Пусть и гомеоморфны ( ) и . Тогда a определяет компактное открытое множество r(a) . Множеству r(a) соответствует компактное открытое множество , с однозначно определённым элементом по лемме 4. Таким образом получаем отображение : , при котором . Покажем, что - изоморфизм решёток. Если a,bразличные элементы из , то , следовательно, , поэтому и - инъекция.

Для произвольного открытому множеству соответствует и очевидно , что показывает сюръективность .

Пусть a,bпроизвольные элементы из . Заметим, что . Открытому множеству при гомеоморфизме соответствует открытое множество , а соответствует . Следовательно, = . Поскольку = , то , т.е.

Литература.

  1. Биргкоф Г. Теория решёток. – М.:Наука, 1984.

  2. Гретцер Г. Общая теория решёток. – М.: Мир, 1982.

  3. Чермных В.В. Полукольца. – Киров.: ВГПУ, 1997.

27



Характеристики

Тип файла
Документ
Размер
5,3 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6513
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее