86009 (589916), страница 3

Файл №589916 86009 (Высшая математика для менеджеров) 3 страница86009 (589916) страница 32016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Решая первое уравнение, находим значения x1 = 3, x2 = 1. Из второго уравнения - соответствующие значения y: y1 = 1, y2 = 3. Теперь получим уравнение общей хорды, зная две точки А(3,1) и B(1,3), принадлежащие этой прямой: (y-1)/(3-1) = (x-3)/(1-3), или y+ x - 4 = 0.

Пример 1.8. Как расположены на плоскости точки, координаты которых удовлетворяют условиям (x-3) 2 + (y-3) 2 y?

Решение. Первое неравенство системы определяет внутренность круга, не включая границу, т.е. окружность с центром в точке (3,3) и радиуса . Второе неравенство задает полуплоскость, определяемую прямой x = y, причем, так как неравенство строгое, точки самой прямой не принадлежат полуплоскости, а все точки ниже этой прямой принадлежат полуплоскости. Поскольку мы ищем точки, удовлетворяющие обоим неравенствам, то искомая область - внутренность полукруга.

Пример 1.9. Вычислить длину стороны квадрата, вписанного в эллипс x2/a2 + y2/b2 = 1.

Решение. Пусть М(с, с) - вершина квадрата, лежащая в первой четверти. Тогда сторона квадрата будет равна 2с. Т.к. точка М принадлежит эллипсу, ее координаты удовлетворяют уравнению эллипса c2/a2 + c2/b2 = 1, откуда c = ab/ ; значит, сторона квадрата - 2ab/ .

Пример 1.10. Зная уравнение асимптот гиперболы y = 0,5 x и одну из ее точек М(12, 3 ), составить уравнение гиперболы.

Решение. Запишем каноническое уравнение гиперболы: x2/a2 - y2/b2 = 1. Асимптоты гиперболы задаются уравнениями y = 0,5 x, значит, b/a = 1/2, откуда a=2b. Поскольку М - точка гиперболы, то ее координаты удовлетворяют уравнению гиперболы, т.е. 144/a2 - 27/b2 = 1. Учитывая, что a = 2b, найдем b: b2=9 b=3 и a=6. Тогда уравнение гиперболы - x2/36 - y2/9 = 1.

Пример 1.11. Вычислить длину стороны правильного треугольника ABC, вписанного в параболу с параметром р, предполагая, что точка А совпадает с вершиной параболы.

Решение. Каноническое уравнение параболы с параметром р имеет вид y2 = 2рx, вершина ее совпадает с началом координат, и парабола симметрична относительно оси абсцисс. Так как прямая AB образует с осью Ox угол в 30o, то уравнение прямой имеет вид: y = x.

Следовательно, мы можем найти координаты точки B, решая систему уравнений y2=2рx, y = x, откуда x = 6р, y = 2 р. Значит, расстояние между точками A(0,0) и B(6р,2 р) равно 4 р.

Пример 1.12. Со станции ежедневно можно отправлять пассажирские и скорые поезда. Данные приведены в таблице.

Тип поезда

Количество вагонов в составе

плацкартных

купейных

мягких

Пассажирский

5

6

3

Скорый

8

4

1

Резерв вагонов

80

72

21

Записать в математической форме условия, не позволяющие превысить наличный парк вагонов при формировании пассажирских и скорых поездов, ежедневно отправляемых со станции. Построить на плоскости Oxy область допустимых вариантов формирования поездов.

Решение. Обозначим через x количество пассажирских поездов, а через y - количество скорых. Получим систему линейных неравенств: 5x + 8y 80, 6x + 4y 72, 3x + y 21, x 0, y 0.

Построим соответствующие прямые:

5x + 8y = 80, 6x +4y = 72, 3x + y = 21, x = 0, y = 0,

записав их уравнения в виде уравнений прямых в отрезках: x/16 + y/10 = 1, x/12 + y/18 = 1, x/7 + y/21 = 1, x = 0, y = 0.

Заштрихуем полуплоскости, удовлетворяющие данным неравенствам, и получим область допустимых значений:

y

21

18

10



0 7 12 16 x

Рис. 2

Итак, количество скорых поездов не превышает 10, а пассажирских должно быть не более 7.

Пример 1.13. Имеются два пункта производства (A и B) некоторого вида продукции и три пункта (I, II, III) его потребления. В пункте А производится 250 единиц продукции, а в пункте В - 350 единиц. В пункте I требуется 150 единиц, в пункте II -240 единиц и в пункте III - 210 единиц. Стоимость перевозки одной единицы продукции из пункта производства в пункт потребления дается следующей таблицей.

Таблица 1

Пункт

Пункт потребления

производства

I

II

III

A

4

3

5

B

5

6

4

Требуется составить план перевозки продукции, при котором сумма расходов на перевозку будет наименьшей.

Решение. Обозначим количество продукции, перевозимой из пункта А в пункт I через x, а из пункта А в пункт II - через y. Так как полная потребность в пункте I равна 150 единицам, то из пункта В надо завезти (150 - x) единиц. Точно так же из пункта В в пункт II надо завезти (240 - y) единиц. Далее: производительность пункта А равна 250 единицам, а мы уже распределили (x + y) единиц. Значит, в пункт III идет из пункта А (250 - x -y) единиц. Чтобы полностью обеспечить потребность пункта III, осталось завезти 210 - (250 - x -y) = x + y - 40 единиц из пункта В. Итак, план перевозок задается следующей таблицей.

Таблица 2

Пункт

Пункт потребления

производства

I

II

III

A

x

y

250 - x - y

B

150 - x

240 - y

x + y - 40

Чтобы найти полную стоимость перевозки, надо умножить каждый элемент этой таблицы на соответствующий элемент предыдущей таблицы и сложить полученные произведения. Получим выражение:

S(x,y) = 4x + 3y + 5 (250 - x - y) + 5 (150 - x) + + 6 (240 -y) + 4 (x + y - 40) = - 2x - 4y +3280.

По условию задачи требуется найти минимум этого выражения. Но величины x и y не могут принимать произвольных значений. Ведь количество перевозимой продукции не может быть отрицательным. Поэтому все числа таблицы 2 неотрицательны:

x 0, y 0, 250 - x - y 0, 150 -x 0, 240 - y 0, x + y - 40 0. (2.12)

Итак, нам надо найти минимум функции S(x,y) в области, задаваемой системой неравенств (2.12). Эта область изображена на рис.3 - она является многоугольником, ограниченным прямыми:

x = 0, y = 0, 250 - x - y = 0, 150 - x = 0, 240 - y = 0, x + y - 40 = 0.

y

F (0,240) E (10,240)

D (150,100)

(0,40)


О B (40,0) C (150,0) x

Рис. 3.

Находим координаты вершин многоугольника: A (0,40), B (40,0), C (150,0), D (150,100), E (10,240), F (0,240). Очевидно, что функция S(x,y) принимает наименьшее значение в одной из вершин многоугольника CDEFKL.

В самом деле, выясним, где располагаются точки, в которых значения этой функции одинаковы (так называемые линии уровня функции S (x,y) = -2x - 4y + 3280). Если значение функции S (x,y) равно c, где с - вещественная константа, то - 2x - 4y + 3280 = c. Но это уравнение прямой линии. Значит, для функции S линиями уровня являются прямые линии, которые параллельны друг другу при различных значениях c. Если линия уровня пересекает многоугольник, то соответствующее значение c не является ни наибольшим, ни наименьшим. Ведь немного изменив c, мы получим прямую, которая также пересекает многоугольник. Если же линия уровня проходит через одну из вершин, причем весь многоугольник остается по одну сторону от этой линии, то соответствующее значение c является наибольшим или наименьшим.

Итак, функция S (x,y) = -2x - 4y + 3280 принимает наименьшее значение на многоугольнике в одной из его вершин. Поскольку мы уже знаем эти вершины, то подставим соответствующие значения координат и найдем, что

S (0,40) = 3120, S (40,0) = 3200, S (1,500) = 2980,

S (150,100) = 2580, S (10,240) = 2300, S (0,240) = 2320.

Наименьшим из этих значений является 2300. Это значение функция принимает в точке E (10, 240). Значит, x = 10, y = 240. Подставляя эти значения в план перевозок (см. таблицу 2), получаем:

Таблица 3

Пункт

Пункт потребления

производства

I

II

III

A

10

240

0

B

140

0

210

Таким образом, из пункта А в пункт I надо перевезти 10 единиц продукции, из пункта А в пункт II - 240 единиц и т. д. Стоимость намеченного плана равна 2300.

Рассмотренная задача относится к большому классу задач, возникающих не только в экономике, но и в других областях человеческой деятельности. Задачи такого типа называются задачами линейного программирования.

Характеристики

Тип файла
Документ
Размер
7,99 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6305
Авторов
на СтудИзбе
313
Средний доход
с одного платного файла
Обучение Подробнее