85847 (589880), страница 2

Файл №589880 85847 (Символ "О" - асимптотический анализ) 2 страница85847 (589880) страница 22016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

В левой части функции имеют вид a(n) b(n), такие, что существуют константы В, С, n0, m0, что

и

.

Тогда для любого n max(n0, m0,). Значит левая часть принадлежит правой части, а, следовательно, является подмножеством правой части по определению символа О. Соотношение 6 доказано.

Соотношение 5: O(O(f(n))) = O(f(n)); (1.2.5)

Доказательство:

Покажем, что левая часть является подмножеством правой части.

Функция из левой части имеет вид a(n) такой, что существуют положительные константы С, В, n0, m0 такие, что

Следовательно, по определению левая часть является подмножеством правой части. Соотношение 5 доказано.

Соотношение 6: С O(f(n)) = O(f(n)), если С – константа; (1.2.6)

Доказательство:

Существует такая константа В, что , по определению (1.1.1) С = О(1). Тогда С O(f(n)) = О(1) O(f(n)) = (по 1.2.4) = O(f(n)).

Соотношение доказано.

Соотношение 7: O(f(n)g(n)) = f(n)O(g(n)). (1.2.7)

Доказательство:

Покажем, что левая часть является подмножеством правой части.

В левой части функции имеют вид a(n), такие, что существуют константы С, n0, что

.

По определению символа О мы получаем верное равенство (1.2.7). Соотношение 7 доказано.

Соотношение 8: O(f(n)2) = O(f(n))2. (1.2.8)

Доказательство:

O(f(n)2) = O(f(n) · f(n)) = (по 1.2.7) = f(n) · O(f(n)) = (по 1.2.3) = О(f(n)) · O(f(n)) = O(f(n))2

Соотношение доказано.

Соотношение 9: еO(f(n)) = 1 + O(f(n)), если f(n) = О(1) (1.2.9)

Доказательство:

еO(f(n)) = еg(n), где . Т.к. f(n) = О(1), т.е. , то .

. Значит еO(f(n)) = 1 + O(f(n)).

Соотношение доказано.

Соотношение 10: Если сумма сходится абсолютно для некоторого комплексного числа z = z0, то

.

Доказательство:

Данное соотношение очевидно, поскольку

.

Соотношение доказано.

Замечание 4: В частности, S(z) = O(1) при z 0 и S(1/n) = O(1) при n при том только условии, что S(z) сходится хотя бы для одного ненулевого значения z. Мы можем использовать этот принцип для того, чтобы, отбросив хвост степенного ряда, начиная с любого удобного места, оценить этот хвост через О. Так, например, не только S(z) = O(1), но и

S(z) = a0 + O(z), S(z) = a0 + a1z + O(z2),

и т.д., поскольку

,

а последняя сумма, как и сама S(z), абсолютно сходится при z = z0 и есть О(1).

В таблице №1 приведены самые полезные асимптотические формулы [2], половина из которых получена просто путем отбрасывания членов степенного ряда в соответствии с этим правилом.

Таблица №1

Асимптотические аппроксимации, справедливые при n и z 0

(1.2.10)

(1.2.11)

(1.2.12)

(1.2.13)

(1.2.14)

(1.2.15)

Асимптотические формулы для Hn, n! не являются начальными отрезками сходящихся рядов; если неограниченно продолжить эти формулы, то полученные ряды будут расходиться при всех n.

Говорят, что асимптотическая аппроксимация имеет абсолютную погрешность O(g(n)), если она имеет вид f(n) + O(g(n)), где f(n) не включает О. Аппроксимация вида f(n)(1 + O(g(n))) имеет относительную погрешность O(g(n)), если f(n) не включает О. Например, аппроксимация Hn в таблице №1 имеет абсолютную погрешность O(n-6); аппроксимация n! - относительную погрешность O(n-4). (Правая часть (1.2.11) не такая, как требуется, - f(n)(1 + O(n-4)), но ее можно переписать как

.

Абсолютная погрешность этой аппроксимации есть O(nn-3.5e-n). Абсолютная погрешность соотносится с числом верных десятичных цифр справа от десятичной точки, которые сохраняются после отбрасывания члена О; относительная погрешность связана с числом верных «значащих цифр».

§3. Решение задач

Задача 1. Что неверно в следующих рассуждениях? Поскольку n = O(n) и 2n = O(n) и так далее, то заключаем, что ?

Решение:

Замена kn на O(n) подразумевает различные С для различных k; а нужно, чтобы все О имели общую константу. В действительности, в данном случае требуется, чтобы О обозначало множество функций двух переменных, k и n. Правильно будет записать .

Задача 2. Докажите или опровергните: О(f(n) + g(n)) = f(n) + O(g(n)), если f(n) и g(n) положительны для всех nN.

Решение:

Утверждение ложно.

Пусть f(n) = n2, а g(n) = 1. Найдем такую функцию (n), которая бы принадлежала левому множеству, но не принадлежала бы правому множеству, т.е. (С1) (n) [(n) C1(n2 + 1)] и (С2) (nn0) [(n) > n2 + C2].

Возьмем (n) = 2n2.

1). Пусть С1 = 3, тогда (nn0) 2n2 3(n2 + 1). Значит функция (n) принадлежит левому множеству.

2). (С2) (n> ) 2n2 > n2 + C2. Значит функция (n) не принадлежит правому множеству.

Задача 3. Докажите или опровергните: cos O(x) = 1 + O(x2) для всех вещественных х.

Решение:

Если функция g(x) принадлежит левой части так, что g(x) = cos y для некоторого y, причем для некоторой константы С, то
g(x) = cos y = 1 - 2sin2 (y/2) 1 = 1 + 0 х2. Значит существует такая константа В, что g(x) 1 + В х2. Следовательно, множество из левой части содержится в правой части, и формула верна.

Задача 4. Докажите, что .

Решение:

Преобразуем левую часть следующим образом:

.

Заметим, что , тогда , где С – константа, тогда можно записать по определению символа О, что . Используя это для преобразованного равенства, получаем, что

= (по 1.2.4)

Что и требовалось доказать.

Задача 5. Вычислите при nN.

Решение:

(по 1.2.6)

(по 1.2.3)

(по 1.2.4)

(по 1.2.2)

Задача 6. Вычислите (n + 2 + O(n-1))n с относительной погрешностью
O(n-1), при n.

Решение:

(по 1.2.3 и 1.2.4)

При n k = (2n-1 + O(n-2)) 0, тогда ln (1 + k) 0. Тогда при n
ln (1 + k) = k.

(по 1.2.9)

.

Задача 7. Докажите, что , при nN, n.

Решение:

Покажем, что . (*)

По определению - функция аn такая, что . Получаем, что , значит .

Теперь докажем, что :

= (по 1.2.4 и 1.2.6) = = (по (*))
= (по 1.2.6) = (по 1.2.9)
= (по 1.2.6) = .

Глава 2. Приложения символа О.

§1. Асимптотическое решение трансцендентных уравнений: действительного переменного

Пример 1.

Рассмотрим уравнение

x +th x = u,

где u - действительный параметр, - гиперболический тангенс [6], , х и th x – непрерывные, строго возрастающие функции на всей числовой прямой.

Найдем асимптотические приближения для корня:

1). Функция u(x) = x +th x непрерывна и строго монотонна на R. По теореме о непрерывности обратной функции, существует обратная к ней функция х(и), непрерывная и строго монотонная на Еи = R.

Так как при х и(х), то при и х(и).

Пусть и, тогда х и .

Значит, х(и) ~ и, при и. Это первое асимптотическое приближение для корня.

2). Приведем уравнение к виду:

x = и - th x.

+С, где С – некоторая константа. По определению символа О thx = 1+O(1).

x = и – 1 + О(1) - это второе асимптотическое приближение корня.

3). Докажем, что е-2х = О(е-2и): (2.1.1)

подставим второе асимптотическое приближение корня

е-2х = е-2(и – 1 + О(1)) = е-2и е2 еО(1) = (по 1.2.3 и 1.2.9) = е2 О(е-2и) (1 + О(1))=

(по 1.2.3) = е2 О(е-2и) (2О(1)) = (по 1.2.6 и 1.2.4) = О(е-2и).

Разложим th x в ряд [6], удобный при больших х:

th x = 1 – 2е-2х + 2е-4х – 2е-6х +… (х > 0)

Тогда по теореме [3]: (2.1.2)

если ряд сходится при , тогда для фиксированного n в любом круге , где .

Ряд – 2е-2х + 2е-4х – 2е-6х +… сходится при х > 0, т.е. и его сумма равна th x - 1. Значит, по теореме: th x - 1 = О(е-2х), т.е.
th x=О(е-2х)+1.

Тогда x = и - th x = и – 1 + О(е-2х) = (по 2.1.1) = и – 1 + О(О(е-2и)) =

(по 1.2.5) = и – 1 + О(е-2и).

Таким образом, x = и – 1 + О(е-2и) - этот третье асимптотическое приближение корня.

4). Докажем, что е-2х = е-2и+2 + О(е-4и): (2.1.3)

подставим третье асимптотическое приближение корня

(по 1.2.9)

(по 1.2.6)

(по 1.2.3 и 1.2.4) .

Ряд -4х – 2е-6х + 2е-8х – 2е-10х +… сходится при х > 0, т.е. и его сумма равна th x – 1 + 2е-2х. Значит, по теореме: th x – 1 + 2е-2х = О(е-4х),
т.е. th x=О(е-4х)+1 - -2х.

Тогда x = и - th x = и – 1 + -2х + О(е-4х) = (по 2.1.3) =

= и – 1 + 2(е-2и+2 + О(е-4и)) + О(е-4х) = (по 1.2.6) =

= и – 1 + -2и+2 + О(е-4и) + О(е-2х е-2х) = (по 2.1.1) =

= и – 1 + -2и+2 + О(е-4и) + О(О(е-2и) О(е-2и)) = (по 1.2.4) =

= и – 1 + -2и+2 + О(е-4и) + О(О(е-4и)) = (по 1.2.5) =

= и – 1 + -2и+2 + О(е-4и) + О(е-4и) = и – 1 + -2и+2 + 2О(е-4и) = (по 1.2.6) =

= и – 1 + -2и+2 + О(е-4и).

Таким образом, x = и – 1 + -2и+2 + О(е-4и) - этот четвертое асимптотическое приближение корня.

Продолжая этот процесс, получим последовательность приближений с ошибками, асимптотический порядок которых постоянно убывает. Сходимость этой последовательности при неограниченном возрастании числа шагов на основе проведенных рассуждений увидеть трудно, но численные возможности этого процесса можно оценить, взяв, например, и = 5:

1) х = 5;

Характеристики

Тип файла
Документ
Размер
2,21 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6305
Авторов
на СтудИзбе
313
Средний доход
с одного платного файла
Обучение Подробнее