85705 (589860), страница 2
Текст из файла (страница 2)
б) lim (sinx – sin3x) /(sin6x – sin7x);
x 0
в) lim ; г) lim (ln cosx) /(cos3x – cosx).
x 0x 0
109. а) lim ; б) lim (cos8x – cos2x) /(cos6x – cos4x);
x5/2x 0
______
в) lim (9 –2x) 1/(4 – x); г) lim ln(x + x2 + 1) /x.
x 4x 0
____________
110. а) lim (x - x + 2) /(4x + 1 - 3); б) lim (sin2x– sinx) /(cos4x – cos2x);
x 2 x 0
в) lim ((2x + 1) /(3x +1)) 1/x; г) lim (ln(3 – 2tgx)) /cos2x.
x0 x /4
111. -120. Исследовать на непрерывность функцию y = f(x), найти точки разрыва и определить их род. Построить схематический график функции.
111. 112.
113.
114. 115.
(2x2 + 3) /5приx( - , 1] ;
116. 6 – 5xприx (1, 3);
x – 3приx [3, +).
117. arctg
.118.
x ctgx.
119.
.120
.
ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ И ЭЛЕМЕНТЫ ДИФФЕРЕНЦИАЛЬНОЙ ГЕОМЕТРИИ
121. -130. Найти производную функции одной переменной, исходя из определения производной.
y = tg2x.122. y = ln(3x + 1).123. y = cos(x2).
y
= sin(x2 + 2x).125. y = ctg(3x - 2).126. y = 2x2 + 1.
127. y = 2 – cos3x.128. y = 2 + sin2x.129. y = e2x.
y = (x + 1) /(x – 1).
131. -140. Найти производные первого порядка данных функций, используя правила вычисления производных.
1 ) y = 4x4 + tgx; 2) y = x1/2 / sinx;
3) y = ctg5x / x3; 4) y = arctg(ex) + tg(arccos(ex)).
1 ) y = ln(tg(3x + 2)); 2) y = 1 – x2 arcsinx;
3) y = xtgx; 4) y = (x2 – 1) /(x2 + 1).
1) y = arccos(x2) + arcctg(x2); 2) xy = cos(x – y);
3
) y = log2(2x + 1); 4) y = 1 – x2 / 1 + x2.
1) y = (2 - 5x) / 2 – 5x + x2; 2) y = ex – y;
3) y = 2 lnx – x; 4) y = sin2 3t, x = cos4 3t.
1) y = (arcsinx) 1 – x; 2) y = cos2 x + tg2x;
3) x3 + y3 – 3xy = 3; 4) x = t – sin2t, y = 1 – cos 2t.
1) y = sin2x/(1 + sin2x); 2) y = 3arctgx + (arctgx) 3,
3) y = (1 + x2) 1 + 2x; 4) y = tg3t, x = cos2 3t.
1) y = 3 –3x + (3x) –3; 2) y = (x – 1) log5(x2 – 1),
3) y = (x2 + 1) x; 4) y = tg(x2/y2).
1) y = ln(lg(log2x)); 2) y = (x2 + x + 1) /(x2 + 1);
3) y = (x + 1) x; 4) ex + y = x – y.
1) y = (x2 + 1) 3 – (x2 – 1) 3; 2) y = (ln5x) /(x4 – 1);
3 ) y = (tgx) ctgx; 4) x = t ctg(t2), y = t cos2(t2).
1) y = ln(x + x2 + 1); 2) y = x –sin2x;
3) y = 2/(x –1) + 1/(x2 – 1); 4) sin(x + y) + cos(x2 + y2) = 1.
141. -160. Построить график функции, используя общую схему исследования функции.
141. y = (x2 + 2x + 2) /(2 + x2) .142. y = (4 + x2) /(9 – x2).
143. y = (2 + 3x2) /(1 + x2).144. y = (x3 + 2x2 + 2) /(x2 + 1).
145. y = (x2 + 3x + 5) /(x – 1).146. y = (3x3 – 2) /x.
147. y = (2x2 +3x + 1) /(x – 2).148. y = x3/(x3 + 1).
149. y = (3 – 9x2) /(1 – 9x2).150. y = (x3 + 8) /(x3 – 8).
151. y = x e 2x – 1.152. y = ln(x2 – 9).
153. y = (1 + x2) exp(-x2).154. y = lg(4 + x2).
155. y = exp(2/(1 – x)) .156. y = ln(16 – x2).
157. y = x2 + 1 + 2lnx.158. y = exp(1 + 4x – 2x2).
159. y = (2 + x) exp( - 4 - 4x - x2)).160. y = (1 – x) - 0.5 lg(1 – x).
161. -170. Составить уравнение касательной и нормали:
к графику кривой y = f(x) в точке, абсцисса которой равна x0;
к графику кривой x = x(t), y = y(t) в точке, для которой параметр t равен t0.
Построить графики кривых, касательных и нормалей. Для каждой кривой найти кривизну в указанных точках.
1
61.1) y = (9 – x2) /3, x0 = - 3/2; 2) x = 3cost, y = 3 sint, t0 = - /3.
1 62.1) y = 4 – 8x2, x0 = - 1/2; 2) x = 1/2 cost, y = 2 sint, t0 = 5/4.
163.1) y = 16 – 4x2, x0 = 1; 2) x = 2 sint, y = 4 cost, t0 = 5/6.
1
64.1) y = 8 – 3x2, x0 = 2; 2) x = 2 2/3 cost, y = 2 2 sint, t0 = /6.
1
65.1) y = 25 – 5x2, x0 = 0.5 5; 2) x = 5 sint, y = 5 cost, t0 = 7/6.
1
66.1) y = (4 – x2) /2, x0 = 2; 2) x = 2sint, y = 2 cost, t0 = /4.
1
67.1) y = 8 – 4x2, x0 = 1; 2) x = 2 cost, y = 2 2 sint, t0 = /4
1
68.1) y = (7 – x2) /2, x0 = 0.5 7; 2) x = 7 cost, y = 7/2 sint, t0 = /3.
1
69.1) y = 2(4 – x2), x0 = 1; 2) x = 2 sint, y = 2 2 cost, t0 = 5/6.
170.1) y = 4 – 8x2, x0 = 1/2; 2) x = 1/ 2 cost, y = 2 sint, t0 = 5/4.
ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ
171. -180. Даны функция u = f(x,y,z) и точки A(x0; y0; z0) и B(x1; y1; z1). Требуется:
вычислить значение u1 функции в точке В;
вычислить приближенное значение u1 функции в точке В, исходя из значения u0 функции в точке А, заменив приращение функции при переходе от точки А к точке В дифференциалом, и оценить в процентах относительную погрешность, возникающую при замене приращения функции ее дифференциалом;
составить уравнение касательной плоскости к поверхности f(x,y,z) =C в точке А.
171. u = x2 + xyz + z2,A(1; 2; 1),B(1.05; 1.95; 0.96),C = 4.
172. u = x2z – xy + z2,A(1; 3; - 1),B(0.95; 3.08; - 0.96),C = - 3.
173. u = x2 + 2xz + y2z,A(4; 1; 0),B(4.1; 1.04; - 0.1),C = 16.
174. u = z2 – y2 + x + y + z,A(-2; 3; 1),B(-2.1; 3.1.1.05),C = - 6.
175. u = xy + yz + xz,A(2; 1; 2),B(1.96; 0.95; 2.1),C = 8.
176. u = x2 +y2 + z2 +x – z,A(1; - 1; 1),B(1.04; - 1.02; 0.95),C = 3.
177. u = 4 – xy2 +yz,A(-2; 1; 3),B(-2.1; 1.04; 3.1),C = 9.
178. u = x(y + z) – z2,A(-1; 2; 1),B(-0.95; 2.1; 0.95),C = - 4.
179. u = x2 – y2 + z2 + yz,A(1; 1; - 1),B(1.08; 0.92; - 1.08),C = 0.
180. u = 2x – z + 2y2 + xz,A(4; - 1; 1),B(3.95; - 1.05; 1.05),C = 13.
181. -190. Найти наименьшее и наибольшее значения функции
z = f(x; y) в области D, заданной системой неравенств. Сделать чертеж области D.
181. f(x; y) = x2 + 2y2 – 5xy,x - 1,y - 1,x + y 1.
182. f(x; y) = x2 – 3y2 + 6xy + 4,x + y 1.
183. f(x; y) = x2 + 2xy +3y + 4,y 5 x2,y 1.
184. f(x; y) = x2 + 2y2 – 2x – 4y + 5,1 x + y 2,x 0, y 0.
185. f(x; y) = 2y2 + 6xy – 13x +2,x y2 + 1,y (x – 1) /2.
186. f(x; y) = 2x2 + 2y2 – 10x + 13y + 1,x 2,y - 3,y x – 6.
187. f(x; y) = x2 + 3y2 + xy – 2x – y + 4,x - 1 + y 1.
188. f(x; y) = 2x2 + 2xy – 3y + 5,0 y x2,x 1.
189. f(x; y) = 3x2 + 2y2 – 12x + 4y + 7,2 x – y 4,x 0, y 0.
190. f(x; y) = y2 + 2xy + 3x + 11,-3 x - y2 + 1.
191. -200. Дано скалярное поле u = u(x,y). Требуется:
1) составить уравнение линии уровня u = C и построить эту линию; __
2) в точке А найти градиент и производную по направлению вектора АВ;
3) в точке А построить касательную и нормаль к линии уровня, получив их уравнения.
191. u = x2 + 4y2 + 4x + 4y,C = 13,A(1, - 2),B(2, 4).
192. u = x2 + 9y2 + 2x - 6y,C = 2,A(-1, 1),B(0, 4).
193. u = 4x2 + y2 + 4x - 4y,C = 36,A(2, - 2),B(1, 1).
194. u = 9x2 + y2 - 6x - 2y,C = 6,A(1, 3),B(3, 0).
195. u = x2 + 4y2 + 2x - 8y,C = 20,A(2, 3),B(1, 4).
196. u = 25x2 + y2 + 10x + 2y, C = 14,A(-1, - 1),B(2, 4).
197. u = 4x2 + 9y2 - 4x - 12y, C = 8,A(2, 0),B(-1, - 1).
198. u = 9x2 + 4y2 - 12x - 4y, C = 8,A(0, 2),B(2, 5).
199. u = x2 + 25y2 - 2x + 20y, C = 165,A(2, - 3),B(2, 1).
200. u = x2 + 4y2 + 2x - 4y,C = 35,A(5, 1),B(5, 4).
201. -210. Значения функции, полученные экспериментально, приведены в таблице. Методом наименьших квадратов найти наилучшую линейную аппроксимацию экспериментальной зависимости. На плоскости (x, y) построить полученную прямую и точки, заданные табл.1.
Таблица 1
201. | x | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 |
y | - 2.0 | - 0.5 | - 0.5 | 1.0 | 1.5 | 2.4 | 3.2 | 4.0 | |
202. | x | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 |
y | 6.0 | 4.5 | 4.5 | 2.8 | 1.0 | -0.5 | -1.5 | -2.8 | |
203. | x | 0 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 |
y | - 5.0 | - 4.0 | -2.5 | -2.5 | -1.0 | - 0.5 | 1.2 | 2.0 | |
204. | x | 0 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 |
y | 6.5 | 5.2 | 3.5 | 3.5 | 1.6 | 0.2 | - 1.5 | - 2.5 | |
205. | x | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 |
y | - 0.2 | 0 | 0 | 0.1 | 0.15 | 0.25 | 0.3 | 0.4 | |
206. | x | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 |
y | 0.6 | 0.45 | 0.4 | 0.3 | 0.1 | - 0.1 | - 0.2 | - 0.3 | |
207. | x | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 |
y | - 0.5 | - 0.4 | - 0.25 | - 0.25 | - 0.1 | 0 | 0.1 | 0.2 | |
208. | x | 0 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 |
y | 2.0 | 3.0 | 6.5 | 7.5 | 10 | 12.5 | 13.5 | 16.5 | |
209. | x | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 |
y | 2.0 | 0.5 | 0.5 | -1.5 | -1.5 | -3.0 | -4.2 | -5.2 | |
210. | x | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 1.2 | 1.4 |
y | - 4.0 | -2.5 | - 2.5 | - 1.0 | 0.5 | 0.5 | 2.2 | 3.0 |
ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ
211. -220. Найти неопределенные интегралы.