85540 (589840), страница 4
Текст из файла (страница 4)
Якщо вчитель не формував цілеспрямовано цей прийом, то таке порівняння, можливо, не зможе виконувати самостійно майже жоден учень восьмого класу, навіть у тому випадку, коли завдання дати додому.
П'ятий рівень оволодіння прийомом порівняння відрізняється від четвертого тим, що учень не тільки вміє правильно порівняти, але і застосовує це уміння при вивченні інших навчальних предметів, тобто порівняння стає узагальненим прийомом його розумової діяльності.
Прийом порівняння має широке застосування і при заучуванні доведень багатьох теорем, наприклад, теорем про властивості кутів при основі рівнобедреного трикутника, про властивість його медіани, проведеної з вершини до основи, про властивість протилежних кутів паралелограма і тощо. В цих доведеннях є істотно спільне: потрібно обґрунтувати рівність кутів, для цього варто розглянути трикутники, що містять ці кути, і довести рівність трикутників. Порівняння доведень дозволяє виділити загальний орієнтир міркувань, а деталі доведень запам'ятовувати необов'язково .
П.М.Эрднієв, що досліджував роль прийому порівняння в навчальному процесі, рекомендує застосовувати так звані подвійні правила [23], що дозволяють не тільки на слух, але і наочно розмежувати спільні і відмінні властивості в подібних формулюваннях, бачити аналогії, більш глибокі зв'язки, полегшують запам'ятовувати. Наприклад:
гострого кута прямокутного трикутника називається відношення
катета до гіпотенузи.
РОЗДІЛ 2. МЕТОДИЧНІ СИСТЕМИ ФОРМУВАННЯ ТА РОЗВИТКУ ВМІННЯ ПОРІВНЮВАТИ
Шляхи і методичні засоби формування вміння порівнювати
На основі теоретичного аналізу проблеми розвитку розумової діяльності учнів у психології, дидактиці, методиці викладання математики, а також у педагогічному досвіді й особистому викладанні математики ми прийшли до висновку, що без спеціально спрямованого формування розумова діяльність підлітків розвивається повільно. Процес розвитку мислення в різних педагогічних умовах піддається удосконалюванню різними шляхами. При організації експериментального навчання ми виходили з того, що засвоєння знань, сформованих при навчанні математики, можливо лише на основі цілеспрямованого навчання учнів прийомам розумової діяльності.
Одним із широко розповсюджених і на перший погляд дуже простим є прийом порівняння. Його відносять і до розумового і до навчального прийомів. К.Д.Ушинський вважав, що порівняння – основа всякого мислення і що в дидактику цей прийом повинний бути основним.
Отже, наш наступний підрозділ ми присвятимо методиці формування вміння порівнювати.
Методика формування вміння порівнювати.
Перш ніж почати цілеспрямоване формування прийому порівняння в учнів, необхідно попередньо з'ясувати рівень сформованості уміння порівнювати і розуміння сутності прийому порівняння, тобто провести діагностику.
Це можна зробити через спеціальну письмову або контрольну роботу, можна провести бесіду з учнями, обговорюючи при цьому наступні питання:
-
Що таке порівняння? Що означає “порівнювати”?
-
Навіщо проводять порівняння?
-
Яка послідовність дій при порівнянні?
Ми проводили діагностику учнів 7-9 класів Херсонської загальноосвітньої школи № 46, запропонувавши їм відповісти в письмовому виді на наступні питання:
-
Що таке порівняння? Що означає “порівнювати”?
-
Навіщо проводять порівняння?
-
Яка послідовність дій при порівнянні?
Були, також, запропоновані учням практичні пізнавальні
завдання наступного характеру:
-
дати означення рівностороннього і рівнобедреного трикутника, порівняти їх;
-
порівняти означення прямокутника і квадрата.
Підводячи підсумки цієї роботи і зробивши розрахунки, ми одержали наступні дані: 65,5% порівняння замінили простим описом об'єктів, що порівнювалися; 10,3% пояснили порівняння, як встановлення спільних і відмінних ознак, але і вони практично відчували труднощі при виконанні порівняння; 27,2% порівняння обмежили перерахуванням тільки відмінних ознак , а 4 учня (13,8%) зрозуміли і використовували порівняння, як знаходження подібності. Аналізуючи відповіді на поставлені питання ми прийшли до висновку, що учні не розуміють ролі порівняння в засвоєнні знань. Вони не тільки не можуть провести повне порівняння, але і поверхово володіють фактичним матеріалом, що не завжди помітно при його послідовному викладі, і взагалі завдання на порівняння для школярів незвичні й важкі.
Після діагностики необхідно створити атмосферу зацікавленості в оволодінні учнями прийомом порівняння. Для цього на етапі мотивації доцільно застосовувати різні девізи, епіграфи до уроку, наприклад, “Усе пізнається в порівнянні !”,”Без порівняння немає навчання!”
Щоб створити “сприятливий ґрунт” для переходу до наступного етапу формування прийому порівняння – осмислення суті прийому і правил його реалізації ми на наступному уроці, після письмової роботи, провели детальний аналіз її переваг і недоліків по основних структурних компонентах порівняння.
Результати здивували учнів: їм здавалося, що порівнювати так просто. І перед ними виникли питання: "А які ж правила порівняння? Що можна порівнювати, а що не можна? Чи можна скласти план і схему порівняння?" Ці і подібні питання створюють сприятливий ґрунт для осмислення суті прийому. Учні переконуються, що для порівняння об'єктів недостатньо знати окремі властивості, необхідно знати ще сутність і правило-орієнтир порівняння . Осмислення суті прийому і правила його реалізації один з найбільш важливих етапів.
Суть прийому роз'ясняється учням у виді короткого визначення: порівняння – це прийом розумової діяльності, за допомогою якого в предметах і явищах виділяються окремі ознаки, знаходяться спільні і відмінні властивості. Потім у процесі пошукової бесіди або інструктажу вводиться правило-орієнтир використання даного прийому.
Він має такий вигляд:
-
установити мету порівняння;
-
перевірити, чи відомий матеріал про об'єкти, що будуть порівнюватися;
-
виділити головні ознаки, по яких будуть порівнюватися об'єкти;
-
знайти різні властивості;
-
знайти відмінність і (або) подібність;
-
сформулювати висновок про подібність і (або) відмінність даних об'єктів відповідно до поставленої мети.
Правило-орієнтир учні повинні записати в зошитах, а вчителеві бажано завжди його мати на уроці на відеопроекторі або плакаті. Далі вчитель організує роботу з формування уміння порівнювати відповідно до правила-орієнтира.
Наприклад, пропонує порівняти ознаки подібності і ознаки рівності трикутників(мал.1):
-
Встановлюємо мету порівняння: систематизація знань, раціоналізація запам’ятовування.
-
Перевіряємо, чи знаємо ми ознаки рівності і ознаки подібності трикутників.
-
Складаємо план порівняння: сформулювати теореми, ідеї доведень, з’ясувати і обґрунтувати основні знання які будемо використовувати, значення матеріалу.
-
Знаходимо спільні і відмінні риси, для цього порівнюємо формулювання теорем: вони відрізняються лише термінами “пропорціональні” і “рівні”.
Висновок: якщо замінити термін “пропорціональні” на термін ”рівні”, то із ознак подібності отримуємо відповідні ознаки рівності трикутників, тобто взяти К=1. Це доцільно застосовувати для раціонального запам’ятовування матеріалу.
Далі порівнюємо доведення ознак подібності і ознак рівності трикутників.
Для доведення всіх трьох ознак подібності трикутників застосовується загальна схема:
1. Будуємо трикутник, гомотетичний одному із даних в умові, з коефіцієнтом К= і довільним центром гомотетії.
2. Доводимо, що отриманий при гомотетії трикутник дорівнює другому, даному в умові, за відповідною ознакою рівності трикутників.
3. Робимо висновок на підставі того, що послідовне виконання перетворення гомотетії і руху є подібність.
При доведенні всіх трьох ознак рівності трикутників застосовуються аксіоми існування трикутника, рівного даному, відкладання відрізків і кутів. У процесі доведення третьої ознаки застосовується метод від супротивного. |
Основні знання, які використовуються в обґрунтуваннях, різні. Тому доведення ознак подібності трикутників необхідно знати незалежно від доведень ознак рівності трикутників.
Висновок зроблений на основі порівняння: ознаки рівності трикутників – це окремий випадок ознак подібності, коли К=1, термінові „пропорційні” відповідає термін «рівні». Тому досить запам'ятати тільки ознаки подібності трикутників. Доведення теорем різні для ознак подібності і рівності трикутників. Призначення ознак однакове.
Багато дослідників вважають, що пізнавальні задачі дозволяють формувати в учнів досвід творчої пошукової діяльності, який іншим шляхом набути неможливо. Будь-яка пізнавальна задача або завдання для свого рішення вимагає визначеного прийому розумової діяльності або сукупності цих прийомів, що розвивають розумові здібності учнів.
Розглянемо пізнавальну задачу: „Порівняти розв’язання задач про ділення відрізка навпіл і про побудову перпендикулярної прямої”. Використовуємо питання-орієнтири, складені відповідно до правила-орієнтира прийому порівняння. Повторюємо розв’язання кожної задачі. Порівнюємо плани розв’язань і встановлюємо спільне в них: після побудови за допомогою циркуля точок А і В на прямій, розв’язання другої задачі співпадає з першою. Встановлюємо спільне в доведеннях: з рівності трикутників випливає рівність відповідних сторін або кутів. Робимо висновки: варто запам'ятовувати раціональне розв’язання задачі. Задача на побудову перпендикулярної прямої зводиться до задачі на ділення відрізка навпіл і відрізняється від неї додатковою дією – находженням на прямій точок А і В. Тому варто пам'ятати те, як розв’язувати задачу на ділення відрізка навпіл, і те, що в другій задачі потрібно спочатку за допомогою засічок із точки О знайти на прямій точки В і А. При доведенні варто шукати рівні трикутники і виділяти необхідні рівні елементи. У даному випадку порівняння дозволяє виділити головне, виступає як прийом раціонального запам'ятовування і відтворення знань.
Розглянемо прийоми формування вміння порівнювати на уроках систематизації, повторення, узагальнення знань. Вміння проміжного протиставлення можна формувати на уроках паралельного повторення, систематизації знань або вивченні понять осьової і центральної симетрії. Дії виконуються послідовно для одного і другого поняття (таблиця 4).
Таблиця 4 | |
Осьова симетрія (мал. 2) | Центральна симетрія (мал. 3) |
1) Візьмемо пряму а і точку А 2) Опустимо з точки А перпендикуляр на пряму а , 3) Продовжимо перпендикуляр в іншу півплощину 4) Відкладемо по іншу сторону від а на перпендикулярі відрізок АО=ОА1 5) Одержимо точку А1, симетричну точці А відносно прямої а Таке перетворення називається осьовою симетрією | 1) Візьмемо точки О і А 2) З'єднаємо точки А і О 3) Продовжимо півпряму по іншу сторону точки О 4) Відкладемо по іншу сторону від точки О на прямій відрізок АО=ОА1 5) Одержимо точку А1,симетричну точці А відносно точки О Таке перетворення називається центральною симетрією |
Потім учні доводять теореми про те, що симетрія на площині є рух (табл. 5).
Таблиця 5 | ||||
Що потрібно довести | Ідея доведення | Зв'язок з алгеброю | ||
Осьова симетрія | Центральна симетрія | Осьова симетрія | Центральна симетрія | |
АВ=А1В1 | Скористатися координатним методом | Розглянути рівні трикутники | У графіку парної функції | У графіку непарної функції точка О (0; 0) – центр симетрії |
Далі пропонуємо учням назвати спільні і відмінні властивості понять.
Один із способів навчання умінню порівнювати – встановлення родо-видових відносин між поняттями. Невмінням учнів установлювати такі відносини пояснюється типова помилка – перенесення видових властивостей на родове поняття, що випливає через нечітке диференціювання властивостей роду і властивостей виду. Щоб запобігти такій помилці, можна запропонувати учням завдання на порівняння: якими властивостями відрізняється прямокутник від паралелограма? квадрат від ромба? квадрат від прямокутника? десятковий дріб від звичайного? пряма пропорційність від лінійної функції? бісектриса рівнобедреного трикутника, проведена з його вершини, від інших бісектрис кутів цього трикутника? які властивості загальні в названих парах понять? В чому причина того, що багато властивостей однакові? В чому причина розбіжності властивостей у порівнюваних поняттях? Яке з порівнюваних понять загальне, а яке частинне?
Без порівняння неможливе підведення під поняття, тобто розпізнавання. При цьому те поняття, до якого потрібно віднести дане поняття, виступає зі своїми властивостями як еталон. У процесі міркувань співставляються властивості „еталона” і піднесеного під нього поняття, і робиться висновок.