85498 (589837), страница 2
Текст из файла (страница 2)
Доказательство:
∆ Заметим, что если каждое подмножество точной нижней гранью обладает, следовательно, ей обладает и пустое множество, то есть в A существует наибольший элемент.
Требуется доказать, что A – полная решетка, то есть любое непустое подмножество имеет наибольший и наименьший элемент.
Рассмотрим X A, Y – множество всех верхних граней множества X в A и положим y = inf Y. Тогда любой элемент из X будет нижней гранью множества Y и, следовательно, x
y для любого x
X; если также x
z для любого x
X, то z
Y и, следовательно, y
z. Поэтому y = sup X. ▲
Определение 8. Упорядоченное множество (I, ) называется направленным, если для любых i, j
I существует такой элемент k
I, что i
k, j
k, то есть для любого двухэлементного множества из I существует верхняя граница.
Предложение 2. Пусть A – упорядоченное множество; тогда следующие три условия эквивалентны:
-
Каждое непустое направленное подмножество множества A имеет точную верхнюю грань.
-
Каждая непустая цепь множества A имеет точную верхнюю грань.
Доказательство:
∆ Каждая вполне упорядоченная цепь является цепью, и каждая цепь направлена, следовательно, (i) (ii); чтобы закончить доказательство, покажем, что (ii)
(i). Возьмем максимальную цепь, в ней существует точная верхняя грань. Тогда по лемме Цорна и направленное подмножество множества A имеет точную верхнюю грань. ▲
Предложение 3 (лемма Цорна). Непустое упорядоченное множество, в котором каждая цепь обладает верхней гранью, имеет максимальный элемент, точнее для любого элемента a из A существует элемент b a, являющийся максимальным в A.
Лемма Цорна была предложена в 1935 году. Она часто заменяет рассуждения, основанные на таких эквивалентных ей принципах, как принцип максимальности Хаусдорфа, аксиома выбора, теорема Цермело о вполне упорядоченности.
Можно показать эквивалентность этих утверждений лемме Цорна, но мы не будем этого делать, так как это не является целью дипломной работы. Лемма Цорна принимается нами в качестве аксиомы.
§2. Связь систем замыканий с операторами замыкания
В параграфе 1 были даны определения систем замыканий и операторов замыкания. Между ними существует взаимосвязь. Сформулируем эту взаимосвязь в качестве теоремы и докажем её.
Теорема 1. Каждая система замыканий D на множестве A определяет оператор замыкания на A по правилу
(X) = ∩{Y D | Y
X}.
Обратно, каждый оператор замыкания на A определяет систему замыканий
D = {X A | (X) = X}.
Доказательство:
∆ 1) Пусть дана система замыканий D и оператор , определенный по правилу (X) = ∩{Y D | Y
X}. Докажем, что – оператор замыкания. Для этого проверим выполнимость условий J. 1 – J. 3. Этот оператор удовлетворяет условиям J. 1 – 2 по определению. По условию, D – система замыканий. Тогда
(X) = X X
D, (1)
так как (X) D, то отсюда вытекает J. 3.
2) Обратно, пусть задан оператор замыкания (удовлетворяющий J. 1 – 3) и пусть
D = {X A | (X) = X}. (2)
Докажем, что D – система замыканий. Если (Xi)i I – произвольное семейство в D и ∩Xi = X, то X
Xi; следовательно, по J. 1. (X)
(Xi) = Xi для всех i, и поэтому
(X) ∩Xi = X.
Вместе с условием J. 2 это показывает, что (X) = X, то есть X D. Таким образом, с помощью мы построили систему замыканий D.
3) Покажем, что соответствие D взаимно однозначно.
Во-первых, пусть D – произвольная система замыканий, – оператор, определенный равенством (X) = ∩{Y D | Y
X} для всех X
A, и D ' – система замыканий, определенная оператором по формуле (2). Тогда D ' = D в силу (1). Возьмем затем произвольный оператор замыкания , и пусть D – система замыканий, определенная оператором по формуле (2), а ' – оператор, определенный системой D по формуле (X) = ∩{Y
D | Y
X}. Как только что было показано, D тогда также определяется оператором ', и, следовательно,
(X) = X '(X) = X. (3)
В силу J. 3, (X) = (X); поэтому из (3) вытекает, что '(X) = (X). Но X (X) и, применяя ' получаем '(X)
'(X) = (X), а обратное включение следует из соображений симметрии. ▲
Системы замыканий и операторы замыкания могут быть определены на любой полной решётке L и соотношения между ними, установленные в теореме 1, сохраняются.
На самом деле теорема 1 является частным случаем соответствующей теоремы (при L = B (A)) для произвольной полной решётки L.
Элементы системы D называются замкнутыми множествами множества A, а (X) называется замыканием множества X в A ((X) на самом деле замкнуто в силу J. 3). Как было отмечено, D является полной решеткой относительно . Точнее, если задано некоторое семейство (Xi)i
I в D, то множество ∩Xi будет наибольшим замкнутым множеством, содержащимся во всех множествах Xi, а ∩{Y
D | Y
Xi для всех i
I} – наименьшим замкнутым множеством, содержащим все множества Xi.
§3. Алгебраические системы замыканий
Начнем с понятия алгебраической операции.
Пусть A – универсальная алгебра с множеством алгебраических операций Ω. Каждая операция ω из Ω имеет определённую арность n, n N
{0}.
Для любого натурального n n-арная операция ω – это отображение из An в A, то есть каждой упорядоченной n-ке {a1; …; an} An операция ω ставит в соответствие однозначно определённый элемент ω(a1; …; an) из A.
В случае п = 1 это будет любое преобразование множества A (отображение A в себя).
Если n = 0, то a0 – это одноэлементное множество и 0-арная операция ω переводит элемент a0 в некоторый элемент ω(a0) = ω из A, то есть 0-арная операция ω фиксирует некоторый элемент в A: является некоторым выделенным элементом алгебры A.
Если дана универсальная алгебра A с множеством алгебраических операций Ω, то подмножество B A называется подалгеброй алгебры A, если оно замкнуто относительно всех операций из Ω. Иными словами, для любого ω
Ω, n
1, и любых а1, а2, …, ап
B должно быть
ω(а1, а2, …, ап) B.
С другой стороны, элементы, отмечаемые в A всеми 0-арными операциями из Ω (если такие существуют), должны содержаться в подалгебре B.
Очевидно, что пересечение любой системы подалгебр универсальной алгебры A, если оно не пусто, будет подалгеброй этой алгебры.
Отсюда следует, что если X – непустое подмножество алгебры A, то в A существует наименьшая среди подалгебр, содержащих целиком множество X. То есть существует наименьшая подалгебра в A, содержащая X и она равна пересечению всех подалгебр алгебры A, содержащих X. Обозначим её через и назовём подалгеброй, порожденной множеством X.
Стоит отметить, что пересечение подалгебр может быть пустым, если множество алгебраических операций Ω алгебры не содержит 0-арных операций.
Заметим, что система S(А) всех подалгебр алгебры A является алгебраической системой замыканий, то есть соответствующий оператор замыкания X
является алгебраическим.
Очевидно, что соответствие X
является оператором замыкания. Проверим, является ли он алгебраическим.
Возьмём a
, тогда a будет принадлежать и
, где
– конечное подмножество множества X, так как элемент a получается путём применения конечного числа конечноместных n-арных операций ω
Ω.
Справедливо и обратное утверждение:
Если D – произвольная алгебраическая система замыканий на множестве A, то для подходящего набора алгебраических операций Ω и соответствующей структуры универсальной алгебры на A, имеем S(A) = D.
Для доказательства обозначим через (X) оператор замыкания для алгебраической системы замыканий D на множестве A. Зададим алгебраические операции на A следующим образом. Каждой n-ке a1, …, an A, где n
N, и произвольному элементу b
({a1, …, an}) поставим в соответствие свою n-арную операцию ω, определенную следующим правилом:
ω(x1, …, xn) = (4)
Это определяет структуру универсальной алгебры на A, где для каждого натурального числа n операции из Ω заданы формулой (4). Таким образом определено бесконечно много алгебраических операций на множестве A, если A бесконечно.
Пусть Ω(X) = – оператор замыкания, соответствующий системе S(A) подалгебр универсальной алгебры A. Проверим, что (X) = Ω(X).
Пусть X A и предположим сначала, что X конечно, то есть X = {c1, …, cm}. Тогда (X)
Ω(X) по определению (4) алгебраических операций ω.
C другой стороны, так как (X) = (X), то для любой n-ки a1, …, an (X) и для любой n-арной операции ω
Ω ω(a1, …, an)
({a1, …, an})
(X) = (X). Поэтому (X) является подалгеброй алгебры
и, значит, Ω(X)
(X).
Пусть теперь X – произвольное подмножество множества A, тогда, так как оба оператора замыкания (X) и Ω(X) – алгебраические (первый по предположению, а второй в силу доказанного выше), имеем
(X) = (X ') =
Ω(X ') = Ω(X),
где X ' пробегает конечные подмножества множества X.