85498 (589837), страница 2

Файл №589837 85498 (Алгебраические системы замыканий) 2 страница85498 (589837) страница 22016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Доказательство:

∆ Заметим, что если каждое подмножество точной нижней гранью обладает, следовательно, ей обладает и пустое множество, то есть в A существует наибольший элемент.

Требуется доказать, что A – полная решетка, то есть любое непустое подмножество имеет наибольший и наименьший элемент.

Рассмотрим X A, Y – множество всех верхних граней множества X в A и положим y = inf Y. Тогда любой элемент из X будет нижней гранью множества Y и, следовательно, x y для любого x X; если также x z для любого x X, то z Y и, следовательно, y z. Поэтому y = sup X.

Определение 8. Упорядоченное множество (I, ) называется направленным, если для любых i, j I существует такой элемент k I, что i k, j k, то есть для любого двухэлементного множества из I существует верхняя граница.

Предложение 2. Пусть A – упорядоченное множество; тогда следующие три условия эквивалентны:

  1. Каждое непустое направленное подмножество множества A имеет точную верхнюю грань.

  2. Каждая непустая цепь множества A имеет точную верхнюю грань.

Доказательство:

∆ Каждая вполне упорядоченная цепь является цепью, и каждая цепь направлена, следовательно, (i) (ii); чтобы закончить доказательство, покажем, что (ii)

(i). Возьмем максимальную цепь, в ней существует точная верхняя грань. Тогда по лемме Цорна и направленное подмножество множества A имеет точную верхнюю грань. ▲

Предложение 3 (лемма Цорна). Непустое упорядоченное множество, в котором каждая цепь обладает верхней гранью, имеет максимальный элемент, точнее для любого элемента a из A существует элемент b a, являющийся максимальным в A.

Лемма Цорна была предложена в 1935 году. Она часто заменяет рассуждения, основанные на таких эквивалентных ей принципах, как принцип максимальности Хаусдорфа, аксиома выбора, теорема Цермело о вполне упорядоченности.

Можно показать эквивалентность этих утверждений лемме Цорна, но мы не будем этого делать, так как это не является целью дипломной работы. Лемма Цорна принимается нами в качестве аксиомы.

§2. Связь систем замыканий с операторами замыкания

В параграфе 1 были даны определения систем замыканий и операторов замыкания. Между ними существует взаимосвязь. Сформулируем эту взаимосвязь в качестве теоремы и докажем её.

Теорема 1. Каждая система замыканий D на множестве A определяет оператор замыкания на A по правилу

(X) = {Y D | Y X}.

Обратно, каждый оператор замыкания на A определяет систему замыканий

D = {X A | (X) = X}.

Доказательство:

∆ 1) Пусть дана система замыканий D и оператор , определенный по правилу (X) = {Y D | Y X}. Докажем, что  – оператор замыкания. Для этого проверим выполнимость условий J. 1 – J. 3. Этот оператор удовлетворяет условиям J. 1 – 2 по определению. По условию, D – система замыканий. Тогда

(X) = X X D, (1)

так как (X) D, то отсюда вытекает J. 3.

2) Обратно, пусть задан оператор замыкания  (удовлетворяющий J. 1 – 3) и пусть

D = {X A | (X) = X}. (2)

Докажем, что D – система замыканий. Если (Xi)i I – произвольное семейство в D и ∩Xi = X, то X Xi; следовательно, по J. 1. (X) (Xi) = Xi для всех i, и поэтому

(X) Xi = X.

Вместе с условием J. 2 это показывает, что (X) = X, то есть X D. Таким образом, с помощью  мы построили систему замыканий D.

3) Покажем, что соответствие D  взаимно однозначно.

Во-первых, пусть D – произвольная система замыканий,  – оператор, определенный равенством (X) = ∩{Y D | Y X} для всех X A, и D ' – система замыканий, определенная оператором  по формуле (2). Тогда D ' = D в силу (1). Возьмем затем произвольный оператор замыкания , и пусть D – система замыканий, определенная оператором  по формуле (2), а  ' – оператор, определенный системой D по формуле (X) = ∩{Y D | Y X}. Как только что было показано, D тогда также определяется оператором  ', и, следовательно,

(X) = X '(X) = X. (3)

В силу J. 3, (X) = (X); поэтому из (3) вытекает, что  '(X) = (X). Но X (X) и, применяя  ' получаем  '(X)

'(X) = (X), а обратное включение следует из соображений симметрии. ▲

Системы замыканий и операторы замыкания могут быть определены на любой полной решётке L и соотношения между ними, установленные в теореме 1, сохраняются.

На самом деле теорема 1 является частным случаем соответствующей теоремы (при L = B (A)) для произвольной полной решётки L.

Элементы системы D называются замкнутыми множествами множества A, а (X) называется замыканием множества X в A ((X) на самом деле замкнуто в силу J. 3). Как было отмечено, D является полной решеткой относительно . Точнее, если задано некоторое семейство (Xi)i I в D, то множество ∩Xi будет наибольшим замкнутым множеством, содержащимся во всех множествах Xi, а ∩{Y D | Y Xi для всех i I} – наименьшим замкнутым множеством, содержащим все множества Xi.

§3. Алгебраические системы замыканий

Начнем с понятия алгебраической операции.

Пусть A – универсальная алгебра с множеством алгебраических операций Ω. Каждая операция ω из Ω имеет определённую арность n, n N {0}.

Для любого натурального n n-арная операция ω – это отображение из An в A, то есть каждой упорядоченной n-ке {a1; …; an} An операция ω ставит в соответствие однозначно определённый элемент ω(a1; …; an) из A.

В случае п = 1 это будет любое преобразование множества A (отображение A в себя).

Если n = 0, то a0 – это одноэлементное множество и 0-арная операция ω переводит элемент a0 в некоторый элемент ω(a0) = ω из A, то есть 0-арная операция ω фиксирует некоторый элемент в A: является некоторым выделенным элементом алгебры A.

Если дана универсальная алгебра A с множеством алгебраических операций Ω, то подмножество B A называется подалгеброй алгебры A, если оно замкнуто относительно всех операций из Ω. Иными словами, для любого ω Ω, n 1, и любых а1, а2, …, ап B должно быть

ω(а1, а2, …, ап) B.

С другой стороны, элементы, отмечаемые в A всеми 0-арными операциями из Ω (если такие существуют), должны содержаться в подалгебре B.

Очевидно, что пересечение любой системы подалгебр универсальной алгебры A, если оно не пусто, будет подалгеброй этой алгебры.

Отсюда следует, что если X – непустое подмножество алгебры A, то в A существует наименьшая среди подалгебр, содержащих целиком множество X. То есть существует наименьшая подалгебра в A, содержащая X и она равна пересечению всех подалгебр алгебры A, содержащих X. Обозначим её через и назовём подалгеброй, порожденной множеством X.

Стоит отметить, что пересечение подалгебр может быть пустым, если множество алгебраических операций Ω алгебры не содержит 0-арных операций.

Заметим, что система S(А) всех подалгебр алгебры A является алгебраической системой замыканий, то есть соответствующий оператор замыкания X является алгебраическим.

Очевидно, что соответствие X является оператором замыкания. Проверим, является ли он алгебраическим.

Возьмём a , тогда a будет принадлежать и , где – конечное подмножество множества X, так как элемент a получается путём применения конечного числа конечноместных n-арных операций ω Ω.

Справедливо и обратное утверждение:

Если D – произвольная алгебраическая система замыканий на множестве A, то для подходящего набора алгебраических операций Ω и соответствующей структуры универсальной алгебры на A, имеем S(A) = D.

Для доказательства обозначим через (X) оператор замыкания для алгебраической системы замыканий D на множестве A. Зададим алгебраические операции на A следующим образом. Каждой n-ке a1, …, an A, где n N, и произвольному элементу b ({a1, …, an}) поставим в соответствие свою n-арную операцию ω, определенную следующим правилом:

ω(x1, …, xn) = (4)

Это определяет структуру универсальной алгебры на A, где для каждого натурального числа n операции из Ω заданы формулой (4). Таким образом определено бесконечно много алгебраических операций на множестве A, если A бесконечно.

Пусть Ω(X) = – оператор замыкания, соответствующий системе S(A) подалгебр универсальной алгебры A. Проверим, что (X) = Ω(X).

Пусть X A и предположим сначала, что X конечно, то есть X = {c1, …, cm}. Тогда (X)Ω(X) по определению (4) алгебраических операций ω.

C другой стороны, так как (X) = (X), то для любой n-ки a1, …, an (X) и для любой n-арной операции ω Ω ω(a1, …, an) ({a1, …, an}) (X) = (X). Поэтому (X) является подалгеброй алгебры и, значит, Ω(X) (X).

Пусть теперь X – произвольное подмножество множества A, тогда, так как оба оператора замыкания (X) и Ω(X) – алгебраические (первый по предположению, а второй в силу доказанного выше), имеем

(X) = (X ') = Ω(X ') = Ω(X),

где X ' пробегает конечные подмножества множества X.

Характеристики

Тип файла
Документ
Размер
4,31 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6381
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее