85498 (589837), страница 4
Текст из файла (страница 4)
Доказательство:
∆ Для доказательства этого утверждения возьмём систему D ' всех таких множеств X D, что X
B и X
A1 = A0, и покажем, что D ' обладает максимальным элементом. Во-первых, D ' ≠
, так как B
D '. Пусть теперь (Xi) – некоторая цепь в D ' и положим X = sup Xi. Тогда X
D, так как система D индуктивна. Далее X
B и X
A1 = A0; поэтому X
D '. Таким образом, система D ' индуктивна, и по лемме Цорна D ' обладает максимальным элементом. ▲
§ 5. Задачи
Задача 1. Установить, что при соответствии Галуа X X*, Y
Y* выполняется тождество (
Xi)* =
Xi*, для произвольных семейств подмножеств (Xi)i
I.
Решение:
Без ограничения общности возьмём два множества X1 и X2 и покажем, что (X1 X2)* = X1*
X2*.
Множеству X1 поставим в соответствие множество X1*:
X1* = {y1 B|(x1, y1)
Ф для всех x1
X1}.
Аналогично для множества X2:
X2* = {y2 B|(x2, y2)
Ф для всех x2
X2}.
Пусть X3 = X1 X2. Тогда (X1
X2)* или X3* будет иметь следующую структуру: X3* = {y3
B|(x3, y3)
Ф для всех x3
X3} или другими словами это такие y3 из B, что пары (x1, y3) и (x2, y3) должны принадлежать соответствию Ф одновременно для всех x1 и x2 из X1
X2. То есть множество элементов y3 из B это множество, состоящее из элементов y1
X1* и y2
X2*, которые одновременно должны удовлетворять соотношениям (x1, y1)
Ф, (x1, y2)
Ф, (x2, y1)
Ф, (x2, y2)
Ф. То есть элементы y3 принадлежат пересечению множеств X1* и X2*, что и требовалось показать.
Задача 2. Пусть X H(X) – произвольное отображение множества B (A) в себя. Показать, что (X) = H(X)
X определяет оператор замыкания тогда и только тогда, когда X
(Y) влечёт (X)
(Y).
Решение:
-
докажем прямое утверждение: если (X) = H(X)
X определяет оператор замыкания тогда X
(Y) влечёт (X)
(Y).
Пусть X (Y), то есть X
H(Y)
Y. Так как по условию (Y) = H(Y)
Y – оператор замыкания, то для него выполняются аксиомы J. 1 – J. 3. Применим аксиому J. 1 к X
H(Y)
Y и аксиому J. 3 к ((Y)):
X H(Y)
Y
H(X)
X
H(H(Y)
Y)
(H(Y)
Y)
H(X)
X
H(Y)
Y. То есть (X)
(Y).
-
докажем обратное утверждение: если X
(Y) влечёт (X)
(Y) тогда (X) = H(X)
X определяет оператор замыкания.
Для доказательства обратного утверждения, необходимо проверить выполнимость аксиом J. 1 – J. 3 оператора замыкания.
Для начала докажем вспомогательное утверждение о том, что Y X* тогда и только тогда, когда X
Y*.
Доказательство:
∆ Докажем прямое утверждение.
Пусть Y X*. Тогда, применив к нему свойство (7), получим Y*
X**. По свойству (7) имеем включение X
X**. Следовательно, получаем X
X**
Y* или X
Y*.
Докажем обратное утверждение.
Пусть X Y*. Тогда X*
Y**
Y ▲
J. 1: пусть X Y и Y
(X), тогда по доказанному выше утверждению включение Y
(X) равносильным образом можно заменить на X
(Y). Получим, что X
X
(Y) или X
(Y). Тогда по условию пункта b) задачи X
(Y) влечёт (X)
(Y). Следовательно, если X
Y, то (X)
(Y).
J. 2: пусть X Y и Y
(X) по утверждению, значит, X
(X).
J. 3: по J. 2 X (X). Применим к нему свойство (7), получим (X)
(X). Применим это же свойство к X
(Y)
(X)
(Y), получим (X)
(Y)
(X)
(Y). Далее по утверждению Y
(X)
(Y)
(X). Получили (Y)
(X)
(Y). При этом (Y)
(X) (по утверждению). Следовательно, мы получаем обратное включение (X)
(X). Тем самым получили, что (X) = (X).
Следовательно, (X) = H(X) X – оператор замыкания.
Задача 3. Показать, что множество всех предупорядоченностей ρ на множестве A является алгебраической системой замыканий. Верно ли это для множества всех упорядоченностей?
Решение:
Непустое множество назовём предупорядоченным, если введенное на нём бинарное отношение ρ рефлексивно и транзитивно. Такое отношение ρ называется отношением предпорядка на A.
Пусть X A
A, или X
B (A
A). Обозначим через J(X) пересечение всех предпорядков на A, содержащих X:
J(X) = {ρ – предпорядок на A: X
ρ}.
Так как при пересечении бинарных отношений на множестве свойства рефлексивности и транзитивности сохраняются, то J(X) – наименьший предпорядок на A, содержащий X. Ясно, что A A является предпорядком на A. Поэтому система всех предпорядков на A является системой замыканий на этом множестве.
Остаётся проверить, будет ли система предпорядков алгебраической. Для этого возьмём произвольную пару (a, b) J(X), где X
A
A. Предпорядок J(X) получается из множества пар X добавлением пар вида (c, c), где c
A, и его расширением по транзитивности: если уже получены пары (d, e) и (e, f), то добавляем и пару (d, f). При этом пара (a, b) в результате последовательного применения расширений по рефлексивности и транзитивности принадлежит конечному множеству пар F
X. Следовательно, (a, b)
J(F).
Для множества всех упорядоченностей верно лишь в том случае, когда множество A содержит один элемент. Иначе, не выполняется свойство антисимметричности.
Задача 4. Показать, что совокупность всех алгебраических систем замыканий на данном множестве A является системой замыканий на B (A). Всегда ли эта система замыканий будет алгебраической?
Решение:
Очевидно, что множество всех алгебраических систем замыкания на данном множестве A является системой замыкания на булеане B (A). Чтобы показать, является ли эта система алгебраической, воспользуемся теоремой 2.
Будем считать, что имеется семейство алгебр , i
I. Каждой из них поставлена система подалгебр S(
). Пересечению соответствующих систем замыканий соответствует алгебра
, при Ω=
. Для произвольного подмножества X в A рассмотрим подалгебру
алгебры
. И возьмём элемент a из
. Элемент a выражается через конечное множество
элементов из
с помощью последовательного применения конечного числа операций из Ω. Следовательно, a принадлежит замыканию
.
Библиографический список
-
Кон П. Универсальная алгебра – М.: Мир, 1968. – 352 с.
-
Курош А. Г. Лекции по общей алгебре – М.: Наука, 1973. – 400 с.
-
Курош А. Г. Курс высшей алгебры – СПб.: Лань, 2006. – 432 с.
-
Оре О. Теория графов – М.: Наука, 1968. – 336 с.
-
Общая алгебра. Т. 1 / под общ. ред. Л. А. Скорнякова – М.: Наука, 1990. – 592 с.
-
Постников М. М. Теория Галуа – М.: Издательство физико-математической литературы, 1963. – 220 с.
-
Риге Ж., Бинарные отношения, замыкания, соответствия Галуа // Кибернетический сборник / под ред. А. А. Ляпунова, О. Б. Лупанова. – вып. 7. – М.: Издательство иностранной литературы, 1963. – С. 129-185.
4