5192-1 (589823), страница 2
Текст из файла (страница 2)
Можно выделить и общий подход к решению проблемы выбора:
• исследовать собственно проблему;
• уяснить исходную ситуацию;
• сформировать возможные решения;
• описать последствия этих решений;
• оценить возможные варианты решений и последствия решений;
• выбрать решения;
• обобщить опыт принятия решений.
Эта общая схема конкретизируется в соответствии с характером задачи. Если по своей сути перед нами задача исследования операций (о чем шла речь в части I), то можно назвать следующие логические элементы:
• выделение цели или совокупности целей;
• выделение альтернативных средств, при помощи которых можно достичь цели;
• определение необходимых ресурсных затрат для каждой альтернативы;
• построение математической или логической модели, то есть определение зависимости между целями, альтернативными средствами их достижения, окружающей средой и ресурсами;
• определение критерия выбора предпочтительной альтернативы;
• проведение необходимых расчетов, их анализ, внесение, при необходимости, соответствующих коррективов;
• собственно принятие решения и его исполнение.
Если задачей является принятие решений в организации, то можно выделить следующие этапы:
• определение целей деятельности организации;
• выявление проблем, трудностей в процессе достижения этих целей;
• исследование проблем и постановка диагноза;
• поиск альтернатив решения, оценка альтернатив, выбор лучшей;
• согласование решений в организации и их утверждение;
• подготовка к вводу решения в действие;
• управление осуществлением решения;
• проверка эффективности принятого решения, внесение необходимых коррективов.
Общими в подходе к решению проблемы выбора являются и следующие пять аспектов:
• КТО должен (или хочет) решать?
• ГДЕ, то есть на каком месте, в каком окружении, при каких обстоятельствах и граничных условиях предстоит принять решение?
• КОГДА (до какого срока или как часто) надо принимать решение?
• КАК (каким образом или в какой форме) должно быть выражено решение?
• ЧТО обуславливает решение? В чем его цель?
• ДЛЯ ЧЕГО оно служит? Зачем его надо принимать?
Наконец, надо заметить, что обсуждение процесса разработки и принятия решения — это фактически тоже моделирование. При таком моделировании, конечно, надо следовать определенным принципам. К моделям принятия решений предъявляют следующие требования:
• корректность (математическая и формально-логическая непротиворечивость модели, невозможность получения в ее рамках бессмысленных, принципиально невозможных или противоречащих друг другу результатов);
• адекватность (правильность отражения в модели моделируемых принципов и особенностей процесса принятия решения);
• полнота (достаточная точность и достаточный объем отражения основных принципов, лежащих в основе принятия решения);
• универсальность (возможность ее применения к достаточно широкому классу ситуаций).
Теперь давайте познакомимся с некоторыми процедурами выбора. Прежде всего отметим, что при использовании любой из них, важно не только сопоставить все возможные решения, но и иметь как можно более полный перечень возможных решений. Самая хорошая процедура, используемая самым хорошим менеджером, не даст того варианта решения, который не попал в поле зрения, не пришел на ум (фокусник не может вынуть из своей шляпы того, что туда не было положено).
По-видимому, самая простая процедура выбора изображена на рис. 2.1.
Рис, 2.1. Схема возможных вариантов
Возможные варианты довольно легко приходят в голову, хорошо группируются, анализируются и оцениваются. Более подробное и более объемное представление проблемы дает целое дерево решений, о чем будет идти речь дальше.
Достаточно широко используется процедура, известная под названием «морфологический анализ», или «морфологический метод». Несколько упрощая суть этого метода, можно представить его так. Составляется таблица, в левой колонке которой могут быть перечислены, скажем, объекты воздействия, а в верхней строке — возможные способы воздействия (мероприятия). Затем клетки заполняются возможными воздействиями на данный объект какими-либо вариантами данного способа. Достоинство метода в том, что можно целенаправленно формировать как объекты воздействия, так и способы воздействия, а затем систематически исследовать различные варианты. Приведем в качестве примера морфологическую таблицу для торговой фирмы, желающей увеличить сбыт и уменьшить расходы (пример, конечно, максимально упрощенный) (табл. 2.1).
Таблица 2.1. Упрощенный вид морфологической таблицы
ПСИХОЛОГИЧЕСКОЕ ВОЗДЕЙСТВИЕ | ЭКОНОМИЧЕСКОЕ ВОЗДЕЙСТВИЕ |
Покупатель 1.Реклама 2.Обещание «бесплатных» дополнительных услуг | 1.сервисное обслуживание 2.Скидка или кредит постоянным покупателям |
Поставщик 1.Встречные услуги 2.Контакты с конкурен- том поставщика | 1.Закупка оптом 2.Самовывоз |
В рамках морфологического анализа можно рассматривать и задачи с достаточно большим числом варьируемых переменных, (то есть не только те две переменные, объект — способ воздействия, о которых написано раньше).
Широкое применение в настоящее время получили специальные математические методы, используемые в сложных и объемных (с большим числом учитываемых факторов) ситуациях. В качестве примера опишем метод «Стоимость — эффективность».
Допустим, решается вопрос об определении количества рекламных щитов с информацией о товарах вашей фирмы. С помощью экспертов или из статистических данных можно оценить (и довольно точно!) связь объемов продаж с количеством щитов. С другой стороны, можно подсчитать (достаточно точно!) общие затраты как функцию числа щитов. Эта функция может расти нелинейно, так как при изготовлении большего числа щитов может возникнуть экономия (на накладных и транспортных расходах, скидка при оптовых закупках и т. д.). Затем ЛПР совместно анализирует связь эффективности рекламы и ее стоимости. В простейшем случае можно ориентироваться на отношение стоимости к результату, то есть на отношение затрат на рекламу к доходу от продаж. Можно сравнивать дополнительные затраты на рекламу с дополнительным доходом, который приносит эта реклама. Иногда ЛПР фиксирует определенную желательную эффективность и минимизирует затраты или, наоборот, задается бюджетным ограничением на затраты и стремится максимизировать эффективность.
Как понятно из приведенного примера, метод «Стоимость — эффективность» — это оптимизационный подход к достаточно объемным или громоздким задачам, а также к задачам, в которых есть трудности с представлением исходной информации (о такой ситуации речь будет идти в следующем пункте).
Как правило, умелое сочетание науки, математических методов и искусства менеджера дает хорошие результаты при использовании подхода «Стоимость — эффективность».
§ 2.2. Поиск решений в расплывчатых условиях
Для формализованного описания реальных ситуаций, в которых нет полной определенности и однозначности, сейчас используется такой математический аппарат, как теория нечетких множеств.
Термин "fuzzy sets", введенный Л. Заде, переводится по-разному: размытые, нечеткие, нечетко определенные, расплывчатые и т. д. множества. С использованием этого термина был дан ряд определений и введены понятия, на основе которых построен новый математический аппарат. Одной из областей применения этого аппарата является теория принятия решений.
Математический аппарат нечетких множеств достаточно сложен (во всяком случае достаточно необычен); большого распространения и применения нечеткие множества еще пока не получили; по-видимому, теория нечетких множеств пока далеко не на таком уровне кристаллизации и завершенности, как классические разделы высшей математики (это, бесспорно, положительное качество для исследователя, но сомнительное достоинство для студента). Но есть мотивы, в силу которых кратко, на описательном уровне ниже рассказывается о применении теории нечетких множеств при принятии решений:
• методы этой теории хорошо соотносятся с образом человеческого мышления, и знакомство с нечеткими множествами позволяет, с одной стороны, более осознанно и более эффективно разрабатывать и принимать решения, а с другой стороны, способствует формированию правильной профессиональной психологии;
• ясно, что со временем теория нечетких множеств будет иметь более широкое распространение, чем сейчас, поэтому первое знакомство с ней откладывать не стоит (уже есть сообщения о том, что с использованием методов этой теории получены технические решения, реализованные в высококачественной видео- и фотоаппаратуре).
Естественно, рассмотрение материала должно начинаться с определения основного понятия — понятия расплывчатого (нечеткого) множества.
Пусть Х = {х} — совокупность объектов, обозначенных через х. Расплывчатое множество А в X есть совокупность упорядоченных пар А = {х, µа (х)}, х Є X, µа (х) — степень принадлежности х множеству А, то есть µа (х) — это функция, ставящая каждому элементу х из X в соответствие какое-то (одно) число из отрезка [0; 1].
Обычное множество — это множество, для которого ц равно либо нулю, либо единице, скажем, множество четных чисел. Примером нечеткого множества может быть множество А «несколько чисел» для множества X = {0; 1; 2;...} всех неотрицательных чисел.
А = {(1; 0,0), (2; 0,05), (3; 0,2), (4; 0,6), (5; 0,8), (6; 1,0), (7; 1,0), (8; 0,8), (9; 0,6), (10; 0,2), (11; 0,05), (12; 0,0)}.
В данном примере утверждается, что одно число еще не может, а 12 чисел уже могут попадать в множество «нескольких чисел», два числа и одиннадцать чисел лишь при очень большом желании, образно говоря, могут быть охарактеризованы как несколько чисел, 6 или 7 чисел признаются таким количеством чисел, которые в данном контексте, бесспорно, отнесены автором примера к числу объектов, обладающих определенным свойством, и т. д.
Рассмотрим еще один пример, иллюстрирующий, как используются нечеткие множества. Пусть примерно прямая линия АБ — это любая линия, проходящая через точки А и Б так, что расстояние d, от каждой точки АБ до («истинной») прямой (АБ)° по отношению к длине (АБ)° мало, d — нечеткая переменная (читатель может сам определить d). Примерно средней точкой М на АБ назовем такую точку, расстояние от которой до М° — середины (АБ)° — мало.
С использованием приведенных понятий можно для известной теоремы о трех медианах треугольника (три медианы треугольника пересекаются в одной точке) сформулировать аналог — нечеткую теорему. Пусть АВС — примерно равносторонний треугольник с вершинами А, В, С, а М1, М2, М3 — примерно середины сторон ВС, АС, АВ.
Тогда примерно прямые АМ1, ВМ2, СМз образуют «примерно» треугольник Т1Т2T3, который более или менее мал в сравнении с треугольником АВС (рис. 2.2).
Рис. 2.2. Нечеткая теорема о трех «медианах»
Конечно, приведенные примеры скорее забавны, чем практически полезны, но дело в том, что мы постоянно пользуемся нечеткими понятиями, рассуждениями, множествами, теоремами:
• у корпорации X прекрасные перспективы;
• на фондовой бирже наблюдается резкий спад;
• корпорация У использует прогрессивную технологию и т. д.
Обратите внимание на то, что для описания расплывчатости недостаточно теории вероятностей и статистических методов, они предназначены для работы со случайностью, когда речь идет о принадлежности некоторого объекта к четкому множеству. Скажем, последний из приведенных примеров содержит расплывчатое утверждение вследствие неточности, нечеткости выражения «прогрессивная технология», в то время как утверждение «вероятность того, что фирма 2 работает в убыток, равна 0,8» содержит информацию о мере неопределенности относительно принадлежности 2 к четкому множеству фирм, работающих в убыток.
Люди, в отличие от ЭВМ, обладают способностями оперировать расплывчатыми понятиями и выполнять расплывчатые инструкции (вспомните русскую народную сказку, в которой герой блестяще выполнил одну из таких инструкций: «Пойди туда, не знаю куда, принеси то, не знаю что»). Люди также способны на интуитивном уровне оперировать с расплывчатыми целями («Фирме надо сохранить за собой около 15—20% рынка»), расплывчатыми ограничениями («Фирма не может потратить на рекламу значительную часть квартального дохода») и с расплывчатыми решениями («На рекламу будет выделено около 5—8% дохода»).
При том подходе к принятию решений в расплывчатых условиях, который развит Р. Беллманом и Л. Заде, и цель, и ограничения рассматриваются как расплывчатые множества в пространстве альтернатив.
Если X = {х} — заданное множество альтернатив, то расплывчатая цель Q отождествляется с фиксированным расплывчатым множеством Q в X. Например, если X — действительная прямая, а расплывчатая цель формулируется как «х должно быть значительно больше 10» (скажем, доход должен быть таким в каких-то известных единицах), то эту цель можно представить как расплывчатое множество с функцией принадлежности