63239 (588918), страница 3
Текст из файла (страница 3)
Системи зі зсувом рівня окремих компонентів відеосигналу виявилися не дуже надійними і поступово від них відмовилися на користь більш дороблених методів зі зсувом у часі окремих елементів зображення, що забезпечують значно більш високу надійність. Серед систем, що дозволяють розпізнати зображення, але утрудняють його перегляд найбільш відомий Discret, де зображення кожного рядка затримується на 0, 1 чи 2 мкс за допомогою додаткових аналогові лінії затримки, підєднуємих до каналу на період рядка по псевдовипадковому законі. На прийомній стороні закон чергування відновлюється по кодовому слову, переданому разом із сигналом і що розшифровується декодером [ 16] .
У системі Videocrypt закладений більш складний принцип переміщення частин рядків. Кодер розсікає кожен рядок в одній з 256 крапок, обраних по псевдовипадковому законі , і змінює місцями частини розсіченого рядка.
При цьому цілком руйнується структура зображення по вертикалі, але частково зберігається горизонтальна структура - титри, написи, меню програм .
Інформацію, необхідну для відновлення зображення, декодер одержує з двох джерел: один ключ передається в закодованому виді в інтервалі кадрового гасящего імпульсу, інший поширюється у виді спеціальної абонентської картки, що розсилається передплатникам кожні три-чотири місяця. Сьогодні Videocrypt - найбільш розповсюджений метод
Для стандартів сімейства МАС розроблений метод засекречування Eurocrypt, що базується, як і Videocrypt на розсіченні і перестановці частин рядка. Інформація про координати розсічення передається в рядку 625 у виді кодового числа. для його розшифровки на прийомі використовується абонентська картка з вмонтованим у неї кристалом пам'яті, у якій записані ключі до коду й інструкції з дешифрування. Eurocrypt застосовується більш ніж у 80% усіх ТВ каналів, що використовують сигнали D2- і D2-MAC.
Засекречування сигналів у цифровому телебаченні не представляє особливої проблеми, тут може широко використовуватися весь арсенал методів, розроблених раніше для цифрового радіозв'язку. В одній із практично реалізованих систем цифровий потік зашифровується за допомогою переданого разом із сигналом кодового слова довжиною 56 біт, генерируємого псевдовипадковим образом і змінюваного з інтервалом від часток до декількох секунд. Кодове слово у свою чергу зашифровується за допомогою ключа, обновлюваного раз у кілька тижнів, а той останній розсилається абонентам по супутниковому каналі також у засекреченому виді. Алгоритм декодування записується в кристалі мікропроцесора, що поміщається або в декодері, або в абонентській картці і працює тільки при наявності ключа. Ступінь таємності такого коду дуже висока.
1.6 Аналоговий супутниковий приймач
Супутниковий приймач, поряд з антеною і конвертором, є складовою частиною прийомної установки СБТВ. Він призначений для подальшого перетворення сигналу першої ПЧ, що надходить з конвертора, у другу ПЧ, а також демодуляції з наступним формуванням з виділених сигналів зображення і звуку телевізійного НЧ-сигнала і радіосигналу з амплітудною модуляцією в стандарті наземного телебачення. Структура аналогового супутникового приймача приведена на рис. 1.4.
Рисунок 1.4 Структура аналогового супутникового приймача
Необхідно відзначити принципову різницю між сигналами супутникового і наземного телебачення. в апаратурі СБТВ прийнята смуга першої проміжної частоти 0,95- 1, 75 ГГц, що відповідає довжинам хвиль 31-17 см , тобто дециметровому діапазону. Максимальна частота 60-го дециметрового каналу наземного телевізійного віщання складає 790 МГц. Сигнали аналогового супутникового телебачення передаються за допомогою частотної модуляції, ширина смуги частот, займана каналом - 27 МГц, тоді як у наземному телебачення сигнали амплітудно - модульовані, з смугою каналу 8 МГц. Таким чином, задача супутникового приймача - настроювання на потрібний канал і перетворення прийнятого сигналу в стандартний телевізійний формат .
Загальноприйнятої для прийомних установок СБТВ у даний час є схема з подвійним перетворенням частоти: перша ПЧ обрана рівної 0,95-1,75 ГГц, при цьому гетеродин конвертора має фіксоване настроювання , а канал вибирають перебудовою другого гетеродина, тобто в приймачі.
Це рішення оптимальне, так як перебудова частоти виробляється простими й економічними технічними засобами, забезпечується необхідна вибірковість по сусідньому і дзеркальному каналах і зворотному випромінюванні гетеродина. Вибір зазначеного значення першої ПЧ обумовлений необхідністю компромісу між суперечливими вимогами до значення першої ПЧ. Для прийому сигналів до смузі 800 МГц, придушення дзеркального каналу, зворотного випромінювання гетеродина, частота якого повинна лежати поза смугою частот прийнятих сигналів, ПЧ повинна бути обрана якнайвище. для зменшення втрат у сполучному кабелі між конвертором і приймачем, а також для зменшення вартості малошумячого підсилювача ПЧ вона повинна бути не занадто високою [16].
Сучасна технологія виробництва інтегральних схем основних функціональних вузлів, що працюють на частотах 700 МГц і вище, смугових фільтрів на структурах з поверхнево-акустичними хвилями допускає збільшення значення другої ПЧ. В даний час більшість супутникових приймачів мають другу ПЧ, рівну 479,5 МГц і, рідше, 612 МГц.
Діапазон вхідних частот багатьох сучасних супутникових приймачів СБТВ розширений до 0,70- 2,15 ГГц, мається також можливість плавного підстроювання частоти гетеродина. Це дозволяє більш гнучко використовувати різні типи конверторів, особливо повнодіапазонних.
Основними технічними характеристиками супутникового приймача є:
- Діапазон вхідних частот прийнятих сигналів;
- Діапазон рівнів вхідних сигналів;
- Вибірковість по сусідніх і побічних каналах прийому;
- Ширина смуги ПЧ аудіоканала;
- Ширина смуги ПЧ відеоканалу;
- Статичний поріг частотного детектора;
- Діапазон звукової піднесущої;
- Споживана потужність.
Особливість супутникового приймача, у порівнянні з іншими типами радіоприймальних пристроїв, полягає в тому, що він є тільки частиною прийомної установки. При цьому частина функцій приймача виконується конвертором - конструктивно самостійним вузлом, тому такі важливі технічні характеристики прийомної установки, як чутливість і коефіцієнт шуму, визначаються також характеристиками конвертора. Супутниковий приймач повинний забезпечувати три види вихідного сигналу:
-
НЧ відеосигнал розмахом 1В з можливістю переключення полярності і сигнал звуку для подачі на відповідні входи телевізора
-
- АМ-сигнал у стандарті наземного телебачення в одному з каналів дециметрового діапазону
-
Повний демодульований сигнал основної смуги 10,5 МГц без фільтрації і відновлення передспотворень і рівня постійної складової відеосигналу для підключення декодера сигналів, переданих у стандарті МАС
Керування приймачем і всією прийомною установкою може здійснюватися як у режимі заданих функцій шляхом натискання в потрібній послідовності функціональних клавіш, так і в режимі екранних меню шляхом переміщення по заданих параметрах, аналогично керуванню положенням курсору в комп'ютері.
1.7 Цифровий супутниковий приймач
Початок активного цифрового супутникового телевізійного віщання (Digital Broadcast Sate11ite - DBS) відноситься до середини 1996 р. до цього часу був сформований ряд цифрових пакетів і почалося виробництво цифрових приймачів.
Одними з ключових питань розвитку DBS є конструкція, режими роботи й особливо вартість цифрового прийомного обладнання.
В даний час саме ціна і виконувані функції цифрового супутникового приймача стали визначальними для власників цифрових пакетів і фірм - виробників обладнання. Вартість всіх інших компонентів прийомного комплексу - рефлектора, опромінювача і конвертора значно нижче і практично не впливає на вартість усього цифрового обладнання.
Навпроти, аналогові супутникові приймачі високої якості зараз набагато більш доступні, чим 10 - 15 років тому, насамперед, завдяки їхній стандартизації і великим виробничим обсягам.
Основними факторами, що впливають на вартість цифрових супутникових приймачів, є:
- наявність відкритих стандартів;
- універсальність конструкції;
- обсяг виробництва;
- конкуренція виробників.
Створення і упровадження відкритих стандартів, що визначають конструкцію і виробництво цифрових приймачів - тільки перший крок для зниження витрат. Без стандарту MPEG-2, що став синонімом усього « цифрового телевізійного», цифрове супутникове телебачення не досягло б справжнього успіху. Однак це тільки початок, тому що в усьому світі існують несумісні цифрові відеостандарти. Потенційний успіх MPEG-2, DVB і інших перспективних стандартів може бути досягнут тільки за умови їх взаємної сумісності.
1.7.1 Схемотехніка цифрових супутникових приймачів
Цифрові супутникові приймачі істотно відрізняються від аналогових моделей. Розглянемо узагальнену структурну схему, представлену на рис.1.5.
Рисунок 1.5 Узагальнена структурна схема цифрового супутникового приймача
Після того, як виділений сигнал проходить кола демодуляції, він перетвориться в інформаційний потік у виді цифрових пакетів і надходить у пристрій виправлення помилок у демультіплексорі виробляється поділ інформаційного потоку на два канали: аудіо і відео. Декодер підтримує усілякі формати і має велику кількість виходів: цифрове відео, аналогове відео, цифрове аудіо, аналогове аудіо, RGB-вихід і ін.
Керування роботою демультіплексора здійснює мікропроцесор, обробляючи команди користувача, передані через блок керування (пульт дистанційного керування чи модуль приймача).
Розвиток цифрових приймачів відбувається з досить великою інтенсивністю, хоча з часу прийняття стандарту MPEG-2 пройшло кілька років, Розроблювачі і виготовлювачі прийомного супутникового обладнання координують свої зусилля для спрощення конструкції і зниження собівартості. Наслідком цього був випуск у 1997 р. цифрових приймачів вже третього покоління [16].
Рисунок 1.6 Структурна схема цифрового приймача першого покоління
Кінцевою метою спільних зусиль є створення модульної архітектури приймача, що складалася б з універсальних чипів, застосовуваних не тільки в супутниковому телебаченні, але й у системах ММDS-віщання, цифрових кабельних мережах і інших видах телекомунікацій.
Цифрові приймачі першого покоління (рис.1.6) мали велику кількість чипів, кожний з яких був відповідальний за незалежні задачі: корекцію помилок, демодуляцію, демультіплексированіє цифрового потоку, обробку даних (центральний процесор), MPEG-2-декодування відео- і аудіосигналов. У цих моделях використовувалися дорогі динамічні оперативні запам'ятовуючі пристрої (DRAM) з довільним порядком вибірки. Усі використовувані чипи мали досить великі розміри і вартість (близько 55% вартості всього пристрою). Слабким місцем цих конструкцій був центральний процесор з 8- чи 16-розрядною шиною дaнных.
Приймачі другого покоління (1996р.), були розроблені з використанням уже всього трьох чипів, що здійснюють усі функції обробки сигналу. Додатковий четвертий чип забезпечує прийом цифрових програм кабельного ТВ. Супутниковий (чи кабельний) модуль здійснює демодуляцію сигналу і корекцію помилок. Центральний процесор вбудований у наступний чип, що забезпечує керування інформаційними потоками, дешифрування і контроль периферійних пристроїв і пам'яті. Останній чип містить MPEG-2 відео- і аудіодекодер. Ще однією особливістю цієї конструкції стало зменшення числа DRAM, а 32-бітний центральний процесор має більш високу швидкодію.
Третє покоління цифрових приймачів, що випускається зараз ( з 1997р.) засновано тільки на двох чипах. Перший модуль виконує специфічні задачі аналого-цифрового перетворення, демодуляції і корекції помилок. Об'єднання наступних двох чипов в один стало відмітною рисою приймача третього покоління. Він містить центральний процесор, контролер введення-виводу, процесор інформаційних потоків, MPEG-2 відео і аудіо-декодер. Зменшене також число модулів оперативної пам'яті: один SDRAM обсягом 16 Мбайт впевнено обслуговує модифікований чип. Варто додати, що швидкість роботи центрального процесора збільшена з 45 до 150 млн. операцій у секунду .
Таким чином, у даний час типовий цифровий супутниковий приймач виконує демодуляцію прийнятого сигналу і декодування стиснутого за технологією MPEG-2 сигналу. Мається також можливість організації за допомогою модему зворотного каналу через послідовний порт RS 232, а мінірисьний обсяг оперативної пам'яті складає 1 Мбайт. Через це ж рознімання можна підключитися до персонального комп'ютера і поміняти версію програмного забезпечення.
1.7.2 Технічні xapaктepичтики цифрових супутникових приймачів
Розглянемо основні технічні характеристики цифрових супутникових приймачів. Крім традиційного діапазону частот, існують ще декілька параметрів, властивим тільки цифровим системам.
У першу чергу це відноситься до можливості здійснювати одне- чи багатопрограмний прийом на одній частоті.
Single Channel Per Carrier (SCPC) - спосіб передачі, при якому кожна програма модулює окрему несущу. Цей спосіб у порівнянні з МСРС більш енергоємний. Він використовується в тих випадках, коли трансляційні крапки pізних програм географічно рознесені. Частотне мультіплексированіє таких програм відбувається уже в антенно-фідерній лінії супутникового бортового ретранслятора.
Multi Channel Per Carrier (МСРС) - передача декількох різних програм на одній несущій. При цій системі передачі спочатку виробляється тимчасове мультіплексированіє елементарних потоків, що складають різні передачі, а потім отриманий груп0овий транспортний потік модулює одну несущу. Цей спосіб передачі дозволяє більш эффективно, чим при використанні SCPC-пepeдaчи, використовувати смугу пропущення транспондера, тому що скасовуються захисні інтервали між несущими.
Ще одним важливим параметром є швидкість передачі даних (Symbol Rate - SR). У більшості випадків швидкість одиночних каналів (SCPC) коливається від 3 до 9 Мбит/с, а для пакетів (МСРС) - до 30 Мбіт/с. Обмеження нижньої межі швидкості значеннями 15-18 Мбіт/с є однією з причин нездатності деяких приймачів приймати безкоштовні канали, багато з яких передаються поодинці. З цього випливає, що SR - діапазон, српиймаємий приймачем, повинний на сегодняшний день складати 3-30 Мбіт/с [16].
Важливим параметром будь-якого цифрового каналу є PID-коды, що визначають місцезнаходження окремих елементарних потоків у структурі транспортного потоку. Інформація про ці коди зберігається в таблиці, називаної Programm Мар Таblе.
Program Мар Тablе визначає місцезнаходження окремих потоків, що складають усі трансляції, передані в мультіплексированом транспортному потоці. Вона містить також необхідні аудио- і відеопараметри й іншу допоміжну інформацію, що може використовуватися для формування електронного гіда, установки годин і т.д. Ця таблиця передається на початку транспортного потоку разом з іншою службовою інформацією.
Program ldentification (РID) – код, що визначає місцезнаходження визначеного елементарного потоку в загальному транспортному потоці. Найбільш істотний мінус такого підходу - нездатність приймати безкоштовні канали, достоїнство - деяка захищеність від прийому інших платних трансляций. Крім того, такі приймачі вимагають доробки програмного забезпечення при будь-якій зміні довжини елементарних потоків, що входять до складу пакета.