63176 (588906), страница 2

Файл №588906 63176 (Согласующее устройство для измерения четырехполюсных радиоэлементов) 2 страница63176 (588906) страница 22016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

. (12)

При измерении активных сопротивлений на постоянном и переменном токе схемы рис.3.4 используются без конденсатора Cn.

Варианты мостовых схем для измерения параметров различных эквивалентных двухполюсников

Рис.6



Преимуществом схем рис.6 является реализация процесса уравновешивания мостов только путем регулировки резисторов. Недостаток - ограничение частотного диапазона сверху, так как стабильные и чисто активные переменные резисторы трудно реализовать с помощью непроволочных рабочих элементов.

В высокочатотных мостах с частотным диапазоном до сотен МГц применяются автотрансформаторные делители [5].

Погрешности в мостовых приборах могут составлять от десятых до тысячныч долей процента в зависимости от точности образцовых мер.

Ручная балансировка моста, особенно на переменном токе, представляет собой не только трудоемкий, но и сложный процесс.

Этот процесс относительно сложно автоматизировать, так как в измерительных цепях должны применяться цифровые делительные трансформаторы и схемы синхронизации, а так же програмируемые аттенюаторы.

В этой связи определенные достоинства по определению комплексного сопротивления представляют собой схемы с использованием образцовых двухполюсных мер и измерителей векторных отношений. В этом случае мосты с ручной балансировкой полезно использовать для аттестации образцовых мер.

    1. Измерение многополюсников путем сравнения с образцовыми мерами

Рассмотрим условия реализации базового машинно-ориентированного способа измерения линейных параметров многополюсника.

Согласно этому способу, сущность которого приведена в работах [1,2], для определения Y-матрицы многополюсника необходимо выполнить измерение матрицы Uo напряжений холостого хода согласно схемы рис.7а, на которой изображены: источник синусоидального напряжения Ei, многополюсник эквивалентный паразитным параметрам измерительной цепи с матрицей проводимости Yo. Источник Ei подключен к i-му входу-полюсу через комплексное сопротивление Zi, а остальные полюсы-входы нагружены на комплексные сопротивления Zj (j=1).

Индексами i и j обозначены точки подключения измерительного прибора, а именно пробник измерительного канала векторного вольтметра.

Согласно рис.7а при отсутствии измеряемого многополюсника (ИМП) и поочередном подключении последовательно к каждому резистору Zi источника Ei измеряют диагональные Uii и недиагональные

Uoji компоненты матрицы Uo. Затем при поочередном подключении образцовой Yoi меры последовательно к каждому источнику Ei с внутренним сопротивлением Zi (рис.7б) измеряют напряжение Uoi - элемент вектора калибровочных напряжений Uk. Операции измерений

матрицы Uo и вектора Uk опорных и калибровочных напряжений осуществляется n`+n раз, где n- число активных входов многополюсника по переменному току. На этом процесс калибровки измерительной схемы завершается. В результате определяется информация достаточная для учета влияния паразитных параметров эквивалентного многоплюсника Yo.

Рабочий цикл измерения производится согласно рис.3в. В этом случае параллельно схеме рис.7а подключают измеряемый многополюсник с матрицей проводимости Yo. В результате измерительные цепи оказываются нагруженными эквивалентным многополюсником с матрицей проводимости Yo, которую можно расчитать по формуле

Yo = Y + Yo . (13)

Затем производится измерение элементов Uji матрицы U нагруженного режима таким же способом, как и измерение элементов матрицы Uo опорных напряжений. Переключение источника Ei производится n раз и определяются n` напряжений.

Измерение параметров многополюсника

а- измерение элементов матрицы Uo опорных напряжений; б- измерение элементов вектора Uk калибровочных напряжений; в- измерение элементов матрицы и нагруженного режима

Рис.7



Элементы матрицы Uo, U и вектора Uk используются для расчета матриц передачи Ко холостого хода и К нагруженного режима.

Элемент матрицы Ко рассчитывают по формуле

, (14)

а элемент матрицы К- по формуле

, (15)

где Yп- полная проводимость входной цепи пробника измерительного канала векторного вольтметра.

В работе [2] показано, что Y- матрица измеряемого многополюсника может быть определена в результате решения матричного уравнения

Y = 2(K - Ko ) , (16)

где -1 - знак обращения матриц К и Ко.

    1. Методика измерения двух- и четырехполюсных радиоэлементов

Для случая двухполюсника

n = 1 (17)

имеем

i = 1; j = 0. (18)

Очевидно, что при условиях (17) - (18) имеем:

  1. коэффициенты матриц Ко и К с индексами j не имеют смысла;

  2. всего аттестуются один коэффициент по формуле (14) и один коэффициент по формуле (15);

  3. индекс i не имеет смысла, так как n = 1, матричное уравнение (16) превращается в простое алгебраическое;

  4. для определения полной проводимости Y двухполюсника достаточно выполнить согласно рис.8 измерение трех напряжений: Uo холостого хода (рис.8а), Uk калибровки (рис.8б) и U нагруженного режима (рис.8в).

С учетом (16) - (17) и отмеченных замечаний из формул (14) - (15) приходим к формулам

, (17)

Измерение двухполюсника

а - измерение напряжения Uo холостого хода; б - измерение напряжения Uk калибровки при нагрузке схемы образцовой мерой Yk; в - измерение напряжения U при нагрузке схемы измеряемым двухполюсником Y

Рис.8


, (19)

Подставляя коэффициенты Ко и К в уравнение (16) с учетом замечания (15) получаем формулу для расчета аттестуемой проводимости Y.

, (20)

Таким образом, для определения полной проводимости (сопротивления) двухполюсника достаточно выполнить измерения трех напряжений согласно схемам (рис.8). При этом справедливы следующие условия:

  1. измерительный процесс легко автоматизировать, так как при его
    реализации не требуется производить подстроечные операции;

  2. из трех тестов два (при регистрации напряжений Uo и Uk) являются калибровочными и при массовых измерениях на фиксированной частоте производятся только один раз;

  3. при выполнении предыдущего условия процесс измерения сводится к регистрации одного напряжения U с последующим расчетом по формуле (20);

  4. при диапазонных измерениях операции по калибровке можно свести к определению четырех вещественных функций, которые определяют модуль напряжения Uo

Uo = Uo(); (21)

аргумент напряжения Uo

модуль напряжения Uk

Uk = Uk(); (23)

и аргумент напряжения Uk

При использовании стабильной измерительной аппаратуры операции по определению функций (21) - (23) можно выполнить один раз, так функции (19) - (20) определяются в режиме холостого хода или при перестановке нагрузки и их зависимость от частоты не будет сложной. В большинстве случаев эти функции можно выразить через уравнения первого или второго порядка. Для их идентификации необходимо выполнить измерения в двух - трех точках заданного частотного диапазона.

Процесс определения АЧХ и ФЧХ двухполюсника может быть сведен к измерению модуля и фазы напряжения U согласно схеме рис.8в; определения по АЧХ и ФЧХ напряжений Uo и Uk на измеряемой частоте; определение модуля и аргумента проводимости Y на частоте измерения; выполнение аналогичных измерений на всех дискретных точках частотного диапазона, определенных планом эксперимента; вычисление АЧХ и ФЧХ проводимости Y двухполюсника; обработка АЧХ и ФЧХ для определения интересующих пользователя параметров, наблюдения на экране дисплея графиков и т.п.

  1. Средства измерения

    1. Структурная схема измерительного стенда

Структурная схема измерительного стенда для измерения параметров способом сравнения с образцовыми мерами приведена на рис.4.1.

Ядром стенда служит тестер параметров радиоэлементов (ТПР). Автоматизированный режим измерения поддерживается программно с помощью персонального компьютера (ПК). Остальные блоки имеют следующее назначение:

регулятор температурного режима (РТР) для поддержания требуемой по условиям эсперимента температуры измеряемого образца;

программируемый генератор стандартных сигналов (ПГСС) для

измерения в заданном диапозоне частот;

программируемый источник питания (ПИП) для электропитания

измеряемых образцов по постоянному току при высоких уровнях потребляемой мощности;

векторный вольтметр (ВВ) для регистрации сигналов переменного тока;

пакет управления и обработки базы данных РЭ.

Структурная схема измерительного стенда

Рис.9



Контрольно измерительное устройство (КИУ) служит для управления и контроля режимами исследуемого РЭ по постоянному и переменному току. КИУ содержит измерительную головку (ИГ) для подключения исследуемого образца и электропитание его по постоянному и переменному току; и коммутатором сигналов статических и динамических измерительных цепей.

Управление КИУ, ПГСС, ПИП и РТР осуществляется ПК через ТПР. ТПР содержит интерфейс на основе МПУ, регистры для управления цифровыми устройствами в составе стенда и АЦП для измерения и контроля режимов измеряемого РЭ.

    1. Электрическая схема

      1. Общая электрическая схема стенда

Общая электрическая схема комплекса приведена на КД2.791.001ЭЗ (прил.).

Состав устройств на КД2.791.001ЭЗ и их назначение соответствует рис.9.

      1. Общая схема ТПР

Общая схема ТПР приведена на КД2.720.001ЭЗ.

ТПР содержит устройство А1 (стандартный блок питания БПС6-1) и устройство А2 (блок управления КД3.097.002).

Электропитание осуществляется от сети 200В 50Гц через вилку разъема Х1.

      1. Блок управления

Электрическая схема блока управления (БУ) приведена на КД3.097.002ЭЗ.

БУ содержит устройство А1 - ЦАП (КД5.192.007) для управления генератором тока (устройство А5 КД5.192.009); устройство А2 - ЦАП (КД5.192.007) для регулировки коллекторного напряжения при измерении транзисторов; устройство А3 - ЦАП (КД5.192.007) для управления устройством РТР (рис.9); устройство А4 - источник электропитания цепей гальванической развязки ПК с ТПР (КД5.192.008).

Управление устройствами А1- А3 осуществляется МПУ через регистры. Состав регистров, их элементов и управляемых устройств приведено в табл.1.

Таблица 1.

Соответствие регистров устройствам А1 - А3

Номер регистра

Состав элементов

Управляемое устройство

1

DD7, DD8

A1

2

DD9, DD10

A2

3

DD13, DD14

A3

Функционирование БУ поддерживает МПУ на основе микроЭВМ К1816ВЕ35 (DD1), адресного регистра К1533ИР22 (DD2) и ПЗУ К573РФ2 (DD3). Тактовая частота МПУ (6 МГц) стабилизирована кварцем ZQ1.

Функциональное назначение остальных элементов схемы отражено в табл.2.

Таблица 2.

Функциональное назначение элементов БУ

Наименование элементов

Функциональное назначение

Объект управления

DD4,DD5,DD6

дешифратор адреса

регистры на элементах DD7 - DD16

DD11, DD12

регистр

ПГСС

DD15

регистр

КИУ - статика

DD16

регистр

КИУ - динамика

DA1, DA2

источник опорных напряжений

устройства А1, А2, А3

U1, U2

гальваническая развязка

ПК - БУ

VT3, VT4

внешний усилитель мощности стабильного напряжения

устройство А5

С4 - С20

блокировочные конденсаторы

DD1 - DD16

Транзисторы VT4 - VT20 служат для согласования ТТЛ логики с реле, расположенных в КИУ .

Резисторы R15 - R20 служат для регулировки опорных напряжений, которые поступают на устройства А1 - А3. Назначение остальных резисторов понятно из схемы БУ.

Стабилитроны VD1 - VD4 служат для стабилизации режимов, причем VD1 и VD2 выбраны с учетом высокой температурной стабильности.

Разъем XS1 служит для связи с ПК, а через разъем XP1 проводится электропитание БУ от источника БПС6 - 1.

Разъем ХР2 служит для подключения ПГСС и источника Б5-50, а разъем ХР3 - устройства КИУ.

Процесс взаимодействия ПК и МПУ подразделяется на две законченные стадии: передача и прием данных.

При передаче данных с ПК на МПУ происходит следующее. Передаваемые данные в последовательном виде через оптотранзистор гальванической развязки U1 поступают на вход INT микроэвм DD1. Последняя, распознавая сигнал стартового импульса, обрабатывает принимаемые данные посредством виртуального драйвера поддержки протокола V.24 (описанного в п.п.7.3). Данные переведенные в параллельную форму, в соответствии с командой, записываются в выбранный, посредством микросхемы DD4, регистр (DD7-DD14).

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6381
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее