25218 (586578), страница 2

Файл №586578 25218 (Особенности термического режима рек) 2 страница25218 (586578) страница 22016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Изменение теплосодержания dq объема воды V связано с уравнением теплового баланса для участка реки (рис. 2.1):

Qн - Qв = dQ = – dq, (2.3)

где Qв – количество тепла, поступающее на верхнюю границе участка реки (адвекция), Qн – количество тепла, уходящее через нижнюю границу, dQ – изменение потока тепла, dq – изменение теплосодержания водной массы. Если dQ > 0 (уходит тепла больше, чем приходит), то dq < 0 – теплосодержание водной массы уменьшается, а ее температура θ понижается. В соответствии с уравнением (2.2) при dQ < 0 (тепла поступает больше, чем уходит) dq > 0 – теплосодержание водной массы увеличивается и, соответственно, повышается температуры воды Δθ > 0. Таким образом, в рассматриваемой тепловой системе величина dQ однозначно определяет изменение dq и Δθ.

Участки рек – открытые системы и dQ = – dq 0. Если уравнение (2.3) универсально, то уравнение, раскрывающее причины возникновения (уравнение результирующей баланса тепла), отражает специфические условия, влияющие на величину dQ и dq, т.е.

dQ = – dq = А + В + С, (2.4)

где А, B, C приходные и расходные составляющие теплового баланса (Михайлов, Добровльский, Добролюбов, 2007). С учетом (2.1) и (2.3) получаем:

Δθ = - , (2.5)

где А – тепловой поток на границе «водная поверхность – воздух», В-тепловой поток на границе «вода – русло реки», С – внутренние источники поступления или расхода тепла.

А = R + Θx + Θк – Θи, (2.6)

где R – радиационный баланс водной поверхности, – теплообмен с атмосферой, Θx – тепло, поступающее с атмосферными осадками, Θк – поступление тепла при конденсации, Θи – расход тепла на испарение воды.

Теплообмен с руслом реки включает

В = Θгр, (2.7)

где – поступление или отток тепла с грунтовыми водами, Θгр – теплообмен с ложем водного объекта.

Величина

С = Θд Θф Θхим Θб, (2.8)

где Θд – тепло, обусловленное диссипацией гидравлической энергии, Θф – энергию фазовых переходов, Θхим и Θб – приход или расход тепла при химических и биохимических процессах.

Наибольшее влияние на изменение теплосодержания водной массы оказывают процессы на границе «вода – воздух». Они влияют на приток солнечной радиации и теплообмен с прилегающими слоями воздуха. Радиационный баланс водной поверхности:

R = I Iэф = (1-Aa) (Qпр+qрр) – Iэф, (2.9)

где I – поглощенная суммарная солнечная радиация, Iэф – эффективное излучение воды, (Qпр+qрр) – суммарная солнечная радиация при безоблачном небе, Qпр – прямая солнечная радиация, qрр – рассеянная солнечная радиация, Аa – альбедо водной поверхности (Хромов, Петросянц, 2001).

Интенсивность суммарной радиации меняется с высотой Солнца, с высотой местности над уровнем моря, а также зависит от прозрачности атмосферы, облачности и других факторов. Интенсивность солнечной радиации при безоблачном небе I0 = (Qпр + qрр)0 для любой точки земного шара и любого часа года может быть оценено по формуле:

(2.10)

где r0 и r – среднее в данный момент времени расстояние от Земли до Солнца, S0 – солнечная постоянная, hc – высота стояния Солнца, ρс – плотность субстанций в атмосфере, αр – коэффициент рассеяния радиации.

При наличии облаков суммарная радиация определяется по формуле:

I = I0[1 – (a1b1n0) n0], (2.11)

где n0 – общая облачность, в долях единицы, b1 = 0,38, а1 – коэффициент, зависящий от широты местности (Винников, Проскуряков, 1988).

Эффективное излучение воды Iэф это разница между собственным излучением водной поверхности Iс и встречным излучением атмосферы Iа:

Iэф = Ic Ia. (2.12)

Величина Iс определяется с использованием закона Стефана-Больцмана для абсолютно черного тела:

Iа.ч.т. = σТ4, (2.13)

где постоянная σ = 5,710-8 Вт/(м2К4), Т – абсолютная температура воды, К (Хромов, Петросянц, 2001). Так как вода не абсолютно черное тело, то для расчета ее собственного излучения правую часть выражения (2.13) умножают на поправочный коэффициент «серости» тела δв, который для воды меняется от 0,95 до 0,963 при изменении ее температуры θ в диапазоне 0 1000С (Винников, Проскуряков, 1988).

Теплообмен между поверхностью воды и воздухом осуществляется (при отсутствии льда) за счет механизма конвективной теплопередачи и определяется по «закону» Ньютона (Алексеевский, 2006):

qk = -α (θ – θв), (2.14)

где qk – поток тепла через единицу площади водной поверхности, θ – температура воды, θв – температура воздуха, α – коэффициент теплоотдачи. Этот коэффициент зависит от ряда факторов, влияющих на интенсивность теплоотдачи:

α = 2,65 [1 + 0,8w + f(Δθ)], (2.15)

где w – скорость ветра на высоте 2 метра, м/с; f(Δθ) – функция, зависящая от разности температур θ-θB (Винников, Проскуряков, 1988). Если θ-θB > 0, то dqk < 0 и водная масса охлаждается. Если θ-θB < 0, то dqk > 0 и вода нагревается в соответствии с уравнением (2.2).

Тепло, поступающее с атмосферными осадками Θx, определяется по формуле:

Θx = CρθосSx, (2.16)

где С – теплоемкость воды, Дж/(кг0С); ρ – плотность воды, кг/м3; S – площадь зеркала воды, км2; x – слой осадков, мм; θос – средняя температура атмосферной влаги.

Влияние поступления тепла с атмосферными осадками на температуру речной воды выражается повышением или понижением температуры воды в зависимости от знака разности температур речной воды и атмосферных осадков. Если θос<θ, то происходит охлаждение речной воды. Если θос>θ, то происходит увеличение удельного теплосодержания водной массы qу (Дж/м3). Если рассматривать теплоту как консервативную примесь, то

, (2.17)

где qy.p – удельное теплосодержание воды реки до поступления осадков, Wp – объем воды на данном участке реки, x – количество осадков, мм, S – площадь водной поверхности, Qy.oc – удельное теплосодержание осадков.

Затраты или поступление теплоты в водную массу в случае испарения или конденсации водяного пара:

Θконд= Θисп=Lиm= LиEρ, (2.18)

где m – масса испаряемой или конденсируемой влаги; E – слой испарившейся (сконденсировавшейся) воды за единицу времени, м/ч; ρ – плотность воды, кг/м3; Lи – удельная теплота испарения, Втч/кг. Последняя величина зависит от температуры испаряющей поверхности θп (Алексеевский, 2006):

Lи = (25 – 0,024θп) 105, (2.19)

где 25105 Дж – удельная теплота испарения при температуре поверхности воды 00С. Количество испарившейся воды может быть рассчитано, например, по формуле Б.Д. Зайкова (Винников, Проскуряков, 1988). Тогда, с учетом (2.18), количество теплоты, теряемое водой при испарении, равно:

Qи = 4,1 (1 + 0,72w2) (e0-e2), (2.20)

где w2 – скорость ветра на высоте 2 м над поверхностью воды, e0 – давление насыщенного водяного пара в воздухе при температуре испаряющей поверхности, e2 – парциальное давление водяного пара на высоте 2 м.

Большое влияние на температуру воды на участке реки в некоторых случаях имеют тепловые потоки на границе «вода – русло реки». Охлаждение или нагревание грунтовыми водами речных вод ( ) связано с процессами смешения вод разного генезиса. Считая теплоту консервативной примесью (по аналогии с формулой 2.17) получаем:

, (2.21)

где qy.p – удельное теплосодержание воды на участке реки выше зоны выклинивания (впадения) грунтовых вод, Vp=V0+dVв, где V0 – объем воды на участке реки в начальный момент времени, dVв – объем воды, дополнительно поступающий на участок реки за время dt через верхний створ, Vгр – объем грунтовых вод, поступающих на данный участок реки за промежуток времени dt, qy.oc – удельное теплосодержание грунтовых вод.

Теплообмен водной массы с ложем водного объекта происходит по закону Ньютона (Винников, Проскуряков, 1988):

qk = -α (θ-θгр), (2.22)

где qk – поток тепла через единицу площади дна, θ – температура воды, θгр – температура грунтов, α – коэффициент теплоотдачи (зависящий в данном случае от разности температур воды и грунта, скорости потока, свойств грунта и т.п.). Если температура воды в реке выше, чем температура ее русла θ > θгр, то qk < 0 и, в соответствии с (2.2), температура воды реки понижается, нагревая русло реки. Если θ < θгр, то qk < 0 и вода в реке нагревается, а ложе реки охлаждается.

2.2 Географические факторы формирования термического состояния и режима рек

Тепловой режим и тепловое состояние водотоков обусловлены влиянием различных факторов. Оно прослеживается на зональном, бассейновом, районном, местном и локальном уровнях. В генетическом отношении эти изменения связаны с влиянием на температурный режим рек климатических, гидрологических, гидравлических и морфологических факторов.

Климат определяет общие зональные закономерности изменения температуры воды в реках. Они отражают неравномерное поступление солнечной радиации на земную поверхность в разных регионах планеты вследствие уменьшения угла падения солнечных лучей при увеличении широты местности (Хромов, Петросянц, 2001). Анализ распределения суммарной солнечной радиации (Qr) по территории России, например, показывает, что ее величина изменяется от 2500 до 4800 МДж/(м2 год), убывая при переходе от южных широт к северным.

Отражением влияния климата на температуру воды в реках является общая закономерность снижения тепловых характеристик водотоков с увеличением широты местности (Шостакович, 1928). Анализ данных по трем рекам приблизительно равного размера в таежной зоне, зоне смешанных лесов и в лесостепи ЕТР подтверждает эту закономерность (рис. 2.3). Она справедлива, в частности, для рр. Пинега, Сура и Хопер в створах, где площадь их водосбора близка к 50000 км2. Бассейны этих трех рек находятся между 400 и 500 в.д., влияние континентальности климата на термический режим этих рек примерно одинаково. Для сравнения рек в термическом отношении использована характеристика J, соответствующая нормированной сумме среднемесячных температур воды за безледный период года ( ). Анализ графиков изменения величины J за многолетний период для разных рек (см. рис. 2.3) показывает, что с увеличением широты местности величина J, характеризующая осредненную температуру воды в реке за этот сезон года и соответствующий тепловой сток, заметно уменьшается. Градиент изменения величины J (при переходе от лесостепной к зоне широколиственных лесов) в 1977 г. был равен 1,8110-3 км-1 и -2,4510-3 км-1 при переходе от зоны широколиственных лесов к таежной зоне.

Характеристики

Тип файла
Документ
Размер
35,5 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6543
Авторов
на СтудИзбе
300
Средний доход
с одного платного файла
Обучение Подробнее