12938 (585218), страница 9
Текст из файла (страница 9)
При изменении качества перерабатываемой заводом свеклы необходимо производить соответствующую корректировку трехкристаллизационной схемы: а) при переработке свеклы с полученным сиропов из ВУ доброкачественностью 91-92 % часть первого оттека утфеля I направляют на уваривание утфеля III кристаллизации; Целесообразно также применять трехкристаллизационную схему ВНИИСП, которая имеет следующие отличительные особенности: - аффинационный утфель центрифугируют совместно с утфелем II. При поступлении на уваривание должны выполняться следующие качественные требования к продуктам: сироп в смеси с клеровкой должен содержать не менее 65 % массовой доли СВ, быть прозрачным и иметь рН 7,8-8,2, содержание солей Са 0,12-0,5 % СаО к массе сиропа, цветность не более 40 усл. ед. Эффект кристаллизации утфеля I должен составлять 12-13 ед., утфеля II - 5-7 ед., утфеля III - 10-12 ед. - увеличение цветности в результате разложения редуцирующих веществ, в основном, меланоидинов. В конце уваривания цветность утфеля III увеличивается в несколько раз, а утфеля I и II - в 1,5-2 раза - понижение рН, из-за разложения редуцирующих сахаров образуются органические кислоты, способствующие увеличению инверсии.
Сушка белого сахара.
Целью сушки является удаление поверхностной влаги и обеспечение длительного хранения кристаллическго сахара. На сушку направляется сахар с t=60 0С после центрифугирования и влажностью 0,8-1,2 %. Для обеспечения длительного хранения влажность должна соответствовать относительной влажности хранилища.
Влажность и температуру нормируют в зависимости от способа хранения. Существуют два способа хранения: тарный в мешках 50 кг влажность до 0,14% и температура до 25 0С и бестарный - в силосах емкостью 10000-20000 т влажностью не более 0,04 % и t до 22 0С. После центрифуг сахар-песок влажностью 0,8-1,8 % подают виброконвейером к элеватору. Влажный сахар поднимается элеватором и попадает в сушильную часть установки, где высушивается горячим воздухом (t=105 0С). Сушка производится в прямотоке, что позволяет не превышать критическую температуру разложения сахарозы (85 0С). Охлаждение сахара осуществляется в противотоке, температура сахара понижается до 20 0С. Высушенный и охлажденный сахар-песок подается на машину рассева, где отделяются конгломераты и мелкие фракции. Для бестарного хранения формируются фракции с коэффициентом однородности до 10 %. После рассева сахар направляется в бункера, находящиеся в упаковочном отделении, из которых затаривается в мешки, взвешивается, зашивается и ленточным транспортером направляется в склад. При бестарном хранении сахар подается в дозреватель для удаления внутренней влаги из объема кристалла за счет диффузии приблизительно на 10 суток, после чего сахар направляется в силос.
Получение известкового молока и извести.
Из склада хранения известняк конвейером подают на сортировку. Отсортированный известняк конвейером подают в бункер-накопитель топлива. Топливо подают через дозатор. Известняк вместе с ковшом скипового подъемника взвешивают на весах. После дозировки порции шихты ковш по направляющим поднимается к верху печи. При опрокидывании его шихта высыпается в загрузочную воронку. Герметичность загрузочной воронки обеспечивает клапан. Полученный в результате обжига известняка сатурационный газ из балки отсоса газа попадает в сухую ловушку, а затем в газопромыватель для окончательной очистки и охлаждении водой. Затем через каплеулавливатель газ поступает в компрессор, который подает его в завод. Для поддержания разрежения в газопромывателе и каплеулавливателе удаление воды в них осуществляется через гидрозатвор. Обожженная известь по направляющему желобу поступает в известегаситель, куда из сборника подают воду. Полученное известковое молоко поступает на вибросито, где отделяются частицы размером более 1,2 мм, затем в мешалку, гидроциклоны - для отделения частиц от 1,2 до 0,3 мм - и в мешалку известкового молока. Из мешалки насосом подают на дефекацию.
3.1. Задачи исследования
Темой данной работы является «Снижение вязкости растворов мелассы с помощью МГД».
Изучение вопросов влияния ПАВ различного химического строения на различные технологические процессы в сахарном производстве представляет значительный интерес. ПАВ используют на многих этапах производства сахара-песка из сахарной свеклы. Их применяют для снижения пенения сахарных растворов, увеличение скорости кристаллизации, снижение вязкости утфеля и мелассы, уменьшения продолжительности центрифугирования.
Целью данной работы являлось исследование влияния ПАВ на вязкость мелассы. Исследования были проведены со следующими ПАВами:
- ПО-90 (моноглицериды дистиллированные ненасыщенные мягкие);
- ПГ-3 (эфиры полиглицерина с жирными кислотами) - порошок;
- М2 (моноглицериды дистиллированные ненасыщенные);
- М1 (моноглицериды дистиллированные ненасыщенные);
- АМГД (ацетилированные моноглицериды дистиллированные);
- М-90 (моноглицериды дистиллированные ненасыщенные).
Опыты по влиянию МГД на вязкость сахарсодержащих растворов проводили с использованием вискозиметра Гепплера. В ходе их постановки мелассу разбавляли до содержания в ней 80 % сухих веществ и помещали в стеклянный цилиндр, с регулируемой температурой. После достижения заданной температуры (700С) в трубку вискозиметра заливали испытуемый сахарсодержащий раствор и вводили шарик при помощи шарикового пинцета. Далее замеряли время необходимое для прохождения шарика от первой до второй метки. Выполняли не менее трех измерений и рассчитывали их среднее арифметическое значение.
Расчет динамической вязкости по времени падения шарика осуществляли по формуле:
= 1 2
где - динамическая вязкость, Пас;
- время падения шарика, c;
1 – плотность шарика, г/см3;
2 – плотность шарика при температуре измерения, г/см3;
К – константа шарика, Пассм3/гс (по паспорту прибора).
3.2. Исследование мелассы
Определение содержания сухих веществ методом двойного разбавления
На чашки весов помещают внутренний и наружный сосуды для разбавления 1:1 и уравновешивают их при помощи разновесов. Во внутренний сосуд помещают произвольное количество мелассы (30-50 г), снова устанавливают на чашку весов и добавляют в наружный сосуд дистиллированную воду до тех пор, пока не будет достигнуто равновесие. После этого снимают сосуды с чашек весов, осторожно помещают внутренний сосуд открытой стороной в наружный, герметически завинчивают крышку сосуда и ставят его на водяную баню, нагретую до 80-85 0С на 15-20 минут. Содержимое сосуда периодически перемешивают горизонтальными движениями.
По истечении времени сосуд с исследуемым раствором охлаждают в воде до 20 0С, отвинчивают крышку сосуда, перемешивают содержимое стеклянной палочкой и определяют рефрактометрическим методом содержание сухих веществ. Удвоенное показание отсчета по рефрактометру дает содержание сухих веществ в мелассе в % к ее массе.
Показание рефрактометра – 40,4 %.
Содержание сухих веществ в исследуемой мелассе – 40,4 · 2 = 80,8 % к массе мелассы.
Определение содержания сахара по прямой поляризации
Разбавленную в соотношении 1:1 навеску раствора мелассы массой 26,0 г отвешивают в стаканчике и количественно переносят в мерную колбу на 100 мл горячей дистиллированной водой и осветляют при помощи 6-9 мл свинцового утфеля или реактива Герлеса (в одинаковом количестве по 7-10 мл растворов Pb(NO3)2 и NaOH). Затем при температуре 200С доводят дистиллированной водой до метки, взбалтывают и отфильтровывают. Фильтрат заливают в поляриметрическую трубку длиной 200 мм и поляризуют. Полученный отсчет по сахариметру удваивают, что будет соответствовать содержанию сахара в мелассе в % к массе мелассы.
Отсчет по сахариметру – 19,8 %.
Содержание сахара в исследуемой мелассе – 19,8 · 2 = 39,6 % к массе мелассы.
Определение содержания редуцирующих веществ методом Мюллера
Взвешивают 10 г мелассы в стаканчике, растворяют в дистиллированной воде, количественно переносят в мерную колбу на 100 мл и осветляют раствором уксуснокислого свинца в количестве 10 мл. Доводят объем до метки дистиллированной водой, взбалтывают и фильтруют.
Пипеткой отбирают 50 мл фильтрата в мерную колбу на 100 мл, добавляют несколько капель фенолфталеина и 10%-ный раствор углекислого натрия, доводят объем до метки дистиллированной водой, взбалтывают и фильтруют.
Из фильтрата отбирают 20 мл (что соответствует 1 г мелассы), помещают в коническую колбу на 250 мл и нейтрализуют разбавленной кислотой. Объем раствора доводят до 100 мл, добавляют 10 мл реактива Мюллера и помещают колбу в кипящую водяную баню на 10 минут. После кипячения раствор приобретает голубовато-зеленую окраску. Если раствор побурел, то переделать опыт с меньшим количеством фильтрата.
После кипячения раствор охлаждают, прибавляют к нему 5 мл раствора уксусной кислоты (5 моль/дм3) и раствор йода (0,0333 моль/дм3) в количестве от 20 до 40 мл. Колбу накрывают часовым стеклом и выдерживают 2 минуты. Добавляют 5 мл 1%-ного раствора крахмала и титруют раствором тиосульфата натрия (0,0333 моль/дм3) до исчезновения синей окраски.
Аналогично, но без нагрева титруют 20 мл фильтрата, добавив воду и реактивы.
Одновременно проводят контрольное определение без раствора мелассы.
Массовую долю редуцирующих веществ определяют по формуле:
, % к массе мелассы.
Количество тиосульфата натрия, пошедшего на титрование в рабочем опыте – 13,6 мл.
Количество тиосульфата натрия, пошедшего на титрование в контрольном опыте – 15,4 мл.
% к массе мелассы.
Определение содержания солей кальция
Взвешивают 10 г мелассы в стаканчике, растворяют в дистиллированной воде, количественно переносят в коническую колбу на 250-300 мл. Прибавляют 5 мл аммиачного буферного раствора и 7-8 капель раствора индикатора хромогена черного или темно-синего. Раствор приобретает красную окраску.
Полученный раствор титруют из бюретки 1/28 раствором трилона Б до появления зеленовато-синей окраски.
Одновременно проводят глухой опыт с дистиллированной водой, чтобы определить количество солей кальция и магния в воде.
Содержание солей кальция вычисляют по формуле:
, % СаО к массе продукта
или
, % СаО на 100 частей СВ
Количество трилона Б, пошедшего на титрование исследуемого раствора – 19,4 мл.
Количество трилона Б, пошедшего на титрование воды – 9,8 мл.
% СаО к массе мелассы
или
% СаО на 100 частей СВ
3.3. Методика исследования
Опыт №1. Применение ПГ-3.
Масса шарика – 14,4 г.
Плотность шарика ρш=8,14 г/мл.
Константа шарика К=0,12446
Температура в вискозиметре t=70 0С
Сухие вещества раствора мелассы СВ=80%
Плотность раствора мелассы ρр-ра=1,425 г/мл
Проба №1
100 мл 80%-ного раствора мелассы без добавления ПГ-3.
τ1=96,0 с
τ2=90,2 с
τ3=93,5 с
τср=93,2 с
η0=τср·(ρш-ρр-ра)·К
η0=93,2·(8,14-1,425)·0,12446=77,89 Па·с
Проба №2
100 мл 80%-ного раствора мелассы с добавлением 0,081 г ПГ-3.
τ1=75,7 с
τ2=75,1 с
τ3=75,8 с
τср=75,5 с
η0=τср·(ρш-ρр-ра)·К
η0=75,5·(8,14-1,425)·0,12446=63,1 Па·с
Проба №3
100 мл 80%-ного раствора мелассы с добавлением 0,162 г ПГ-3.
τ1=61,2 с
τ2=62,0 с
τ3=61,4 с
τср=61,5 с
η0=τср·(ρш-ρр-ра)·К
η0=61,5·(8,14-1,425)·0,12446=51,40 Па·с
Проба №4
100 мл 80%-ного раствора мелассы с добавлением 0,243 г ПГ-3.
τ1=58,9 с
τ2=59,3 с
τ3=58,7 с
τср=59,0 с
η0=τср·(ρш-ρр-ра)·К
η0=59,0·(8,14-1,425)·0,12446=49,30 Па·с
Проба №5
100 мл 80%-ного раствора мелассы с добавлением 0,324 г ПГ-3.
τ1=69,6 с
τ2=68,8 с
τ3=69,4 с
τср=69,3 с
η0=τср·(ρш-ρр-ра)·К
η0=69,3·(8,14-1,425)·0,12446=57,90 Па·с
Рис. 4. Определение оптимального количества ПГ-3 для снижения вязкости мелассы.
Опыт №2. Применение М1.
Масса шарика – 14,4 г.
Плотность шарика ρш=8,14 г/мл.
Константа шарика К=0,12446
Температура в вискозиметре t=70 0С
Сухие вещества раствора мелассы СВ=80%
Плотность раствора мелассы ρр-ра=1,425 г/мл
Проба №1