183763 (584789)
Текст из файла
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ
ФИЛИАЛ В Г. ЛИПЕЦКЕ
Контрольная работа
по эконометрике
Липецк, 2009 г.
Задача
По предприятиям легкой промышленности региона получена информация, характеризующая зависимость объема выпуска продукции (Y, млн.руб.) от объема капиталовложений (Х, млн.руб.)
| Y | 31 | 23 | 38 | 47 | 46 | 49 | 20 | 32 | 46 | 24 |
| Х | 38 | 26 | 40 | 45 | 51 | 49 | 34 | 35 | 42 | 24 |
Требуется:
-
Найти параметры уравнения линейной регрессии, дать экономическую интерпретацию коэффициента регрессии.
-
Вычислить остатки; найти остаточную сумму квадратов; оценить дисперсию остатков
; построить график остатков. -
Проверить выполнение предпосылок МНК.
-
Осуществить проверку значимости параметров уравнения регрессии с помощью t-критерия Стьюдента (α=0,05).
-
Вычислить коэффициент детерминации, проверить значимость уравнения регрессии с помощью F-критерия Фишера (α=0,05), найти среднюю относительную ошибку аппроксимации. Сделать вывод о качестве.
-
Осуществить прогнозирование среднего значения показателя Y при уровне значимости α=0,01 при Х=80% от его максимального значения.
-
Представить графически фактических и модельных значений Y, точки прогноза.
-
Составить уравнения нелинейной регрессии:
-
Гиперболической;
-
Степенной;
-
Показательной.
-
Привести графики построенных уравнений регрессии.
9. Для указанных моделей найти коэффициенты детерминации, коэффициенты эластичности и средние относительные ошибки аппроксимации. Сравнить модели по этим характеристикам и сделать вывод.
Решение
-
Уравнение линейной регрессии имеет вид:
= а0 + а1x.
Построим линейную модель.
Для удобства выполнения расчетов предварительно упорядочим всю таблицу исходных данных по возрастанию факторной переменной Х (Данные => Сортировка). ( рис. 1).
Рис.1
Используем программу РЕГРЕССИЯ и найдем коэффициенты модели (рис.2)
Рис.2
Коэффициенты модели содержатся в таблице 3 (столбец Коэффициенты).
Таким образом, модель построена и ее уравнение имеет вид
Yт = 12,70755+0,721698Х.
Коэффициент регрессии b=0,721698, следовательно, при увеличении объема капиталовложений (Х) на 1 млн руб. объем выпуска продукции (Y) увеличивается в среднем на 0,721698 млн руб.
-
Вычислить остатки; найти остаточную сумму квадратов; оценить дисперсию остатков S²e; построить график остатков.
Остатки содержатся в столбце Остатки итогов программы РЕГРЕССИЯ (таблица 4).
Программой РЕГРЕССИЯ найдены также остаточная сумма квадратов SSост=148,217 и дисперсия остатков MS=18,52712 (таблица 2).
Для построения графика остатков нужно выполнить следующие действия:
-
Вызвать Матер Диаграмм, выбрать тип диаграммы Точечная (с соединенными точками).
-
Для указания данных для построения диаграммы зайти во вкладку Ряд, нажать кнопку Добавить; в качестве значений Х указать исходные данные Х (таблица 1);значения Y - остатки (таблица 4).
Рис.3 График остатков
3. Проверить выполнение предпосылок МНК.
Предпосылками построения классической линейной регрессионной модели являются четыре условия, известные как условия Гаусса-Маркова.
-
В уравнении линейной модели Y=a+b*X+ε слагаемое ε - случайная величина, которая выражает случайный характер результирующей переменной Y.
-
Математическое ожидание случайного члена в любом наблюдении равно нулю, а дисперсия постоянна.
-
Случайные члены для любых двух разных наблюдений независимы (некоррелированы).
-
Распределение случайного члена является нормальными.
1) Проведем проверку случайности остаточной компоненты по критерию повторных точек.
Количество повторных точек определим по графику остатков: p=5
Вычислим критическое значение по формуле:
.
При
найдем
Схема критерия:
Сравним
, следовательно, свойство случайности для ряда остатков выполняется.
-
Равенство нулю математического ожидания остаточной компоненты для линейной модели, коэффициенты которой определены по МНК, выполняется автоматически. С помощью функции СРЗНАЧ для ряда остатков можно проверить:
.
Свойство постоянства дисперсии остаточной компоненты проверим по критерию Гольдфельда–Квандта.
В упорядоченных по возрастанию переменной X исходных данных (
) выделим первые 4 и последние 4 уровня, средние 2 уровня не рассматриваем.
С помощью программы РЕГРЕССИЯ построим модель по первым четырем наблюдениям (регрессия-1), для этой модели остаточная сумма квадратов
.
| Дисперсионный анализ | ||||||
| df | SS | MS | F | Значимость F | ||
| Регрессия | 1 | 107,7894737 | 107,7894737 | 15,67347 | 0,15751 | |
| Остаток | 1 | 6,877192982 | 6,877192982 | |||
| Итого | 2 | 114,6666667 |
С помощью программы РЕГРЕССИЯ построим модель по последним четырем наблюдениям (регрессия-2), для этой модели остаточная сумма квадратов
.
| Дисперсионный анализ | ||||||
| df | SS | MS | F | Значимость F | ||
| Регрессия | 1 | 4,166666667 | 4,166666667 | 0,186916 | 0,707647 | |
| Остаток | 2 | 44,58333333 | 22,29166667 | |||
| Итого | 3 | 48,75 |
Рассчитаем статистику критерия:
.
Критическое значение при уровне значимости
и числах степеней свободы
составляет
.
Схема критерия:
Сравним
, следовательно, свойство постоянства дисперсии остатков выполняется, модель гомоскедастичная.
-
Для проверки независимости уровней ряда остатков используем критерий Дарбина–Уотсона
.
Предварительно по столбцу остатков с помощью функции СУММКВРАЗН определим
; используем найденную программой РЕГРЕССИЯ сумму квадратов остаточной компоненты
.
Таким образом,
Схема критерия:
Полученное значение d=2,375, что свидетельствует об отрицательной корреляции. Перейдем к d’=4-d=1,62 и сравним ее с двумя критическими уровнями d1=0,88 и d2=1,32.
D’=1,62 лежит в интервале от d2=1,32 до 2, следовательно, свойство независимости остаточной компоненты выполняются.
С помощью функции СУММПРОИЗВ найдем для остатков
, следовательно r(1)=2,4869Е-14/148,217=1,67788Е-16.
Критическое значение для коэффициента автокорреляции определяется как отношение
n и составляет для данной задачи
Сравнения показывает, что r(1)= 1,67788Е-16<0,62, следовательно, ряд остатков некоррелирован.
4) Соответствие ряда остатков нормальному закону распределения проверим с помощью
критерия:
.
С помощью функций МАКС и МИН для ряда остатков определим
,
. Стандартная ошибка модели найдена программой РЕГРЕССИЯ и составляет
. Тогда:
Критический интервал определяется по таблице критических границ отношения
и при
составляет (2,67; 3,57).
Схема критерия:
2,995
(2,67; 3,57), значит, для построенной модели свойство нормального распределения остаточной компоненты выполняется.
Проведенная проверка предпосылок регрессионного анализа показала, что для модели выполняются все условия Гаусса–Маркова.
4. Осуществить проверку значимости параметров уравнения регрессии с помощью t–критерия Стьюдента (
).
t–статистика для коэффициентов уравнения приведены в таблице 4.
Для свободного коэффициента
определена статистика
.
Для коэффициента регрессии
определена статистика
.
Критическое значение
найдено для уравнения значимости
и числа степеней свободы
с помощью функции СТЬЮДРАСПОБР.
Схема критерия:
Сравнение показывает:
, следовательно, свободный коэффициент a является значимым.
, значит, коэффициент регрессии b является значимым.
5. Вычислить коэффициент детерминации, проверить значимость уравнения регрессии с помощью F–критерия Фишера (
), найти среднюю относительную ошибку аппроксимации. Сделать вывод о качестве модели.
Коэффициент детерминации R–квадрат определен программой РЕГРЕССИЯ и составляет
.
Таким образом, вариация объема выпуска продукции Y на 79,5% объясняется по полученному уравнению вариацией объема капиталовложений X.
Проверим значимость полученного уравнения с помощью F–критерия Фишера.
F–статистика определена программой РЕГРЕССИЯ (таблица 2) и составляет
.
Критическое значение
найдено для уровня значимости
и чисел степеней свободы
,
.
Схема критерия:
Сравнение показывает:
; следовательно, уравнение модели является значимым, его использование целесообразно, зависимая переменная Y достаточно хорошо описывается включенной в модель факторной переменной Х.
Для вычисления средней относительной ошибки аппроксимации рассчитаем дополнительный столбец относительных погрешностей, которые вычислим по формуле
с помощью функции ABS (таблица 5).
| ВЫВОД ОСТАТКА | ||||
| Наблюдение | Предсказанное Y | Остатки | Отн. Погр-ти | |
| 1 | 27,14150943 | 6,858490566 | 20,17% | |
| 2 | 29,30660377 | -3,306603774 | 12,72% | |
| 3 | 30,02830189 | -6,028301887 | 25,12% | |
| 4 | 35,08018868 | 2,919811321 | 7,68% | |
| 5 | 35,80188679 | -0,801886792 | 2,29% | |
| 6 | 40,13207547 | -0,132075472 | 0,33% | |
| 7 | 45,90566038 | -3,905660377 | 9,30% | |
| 8 | 45,90566038 | 5,094339623 | 9,99% | |
| 9 | 46,62735849 | -1,627358491 | 3,62% | |
| 10 | 48,07075472 | 0,929245283 | 1,90% | |
По столбцу относительных погрешностей найдем среднее значение
(функция СРЗНАЧ).
Схема проверки:
Сравним: 9,31% < 15%, следовательно, модель является точной.
Вывод: на основании проверки предпосылок МНК, критериев Стьюдента и Фишера и величины коэффициента детерминации модель можно считать полностью адекватной. Дальнейшее использование такой модели для прогнозирования в реальных условиях целесообразно.
6. Осуществить прогнозирование среднего значения показателя Y при уровне значимости
, если прогнозное значение фактора X составит 80% от его максимального значения.
Согласно условию задачи прогнозное значение факторной переменной Х составит 80% от 49, следовательно,
. Рассчитаем по уравнению модели прогнозное значение показателя У:
.
Таким образом, если объем капиталовложений составит 39,2 млн. руб., то ожидаемый объем выпуска продукции составит около 48 млн. руб.
Зададим доверительную вероятность
и построим доверительный прогнозный интервал для среднего значения Y.
Для этого нужно рассчитать стандартную ошибку прогнозирования:
Предварительно подготовим:
- стандартную ошибку модели
(Таблица 2);
- по столбцу исходных данных Х найдем среднее значение
(функция СРЗНАЧ) и определим
(функция КВАДРОТКЛ).
Следовательно, стандартная ошибка прогнозирования для среднего значения составляет:
При
размах доверительного интервала для среднего значения
Границами прогнозного интервала будут
Таким образом, с надежностью 90% можно утверждать, что если объем капиталовложений составит 39,2 млн. руб., то ожидаемый объем выпуска продукции будет от 45,3 млн. руб. до 50,67 млн. руб.
7. Представить графически фактические и модальные значения Y точки прогноза.
Для построения чертежа используем Мастер диаграмм (точечная) – покажем исходные данные (поле корреляции).
Затем с помощью опции Добавить линию тренда… построим линию модели:
тип → линейная; параметры → показывать уравнение на диаграмме.
Покажем на графике результаты прогнозирования. Для этого в опции Исходные данные добавим ряды:
Имя → прогноз; значения
; значения
;
Имя → нижняя граница; значения
; значения
;
Имя → верхняя граница; значения
; значения
8. Составить уравнения нелинейной регрессии: гиперболической; степенной; показательной.
8.1 Гиперболическая модель
Уравнение гиперболической функции:
= a + b/x.
Произведем линеаризацию модели путем замены X = 1/x. В результате получим линейное уравнение
= a + bX.
Рассчитаем параметры уравнения по данным таблицы 2.
b =
=
а =
=38,4+704,48*0,03=60,25.
Получим следующее уравнение гиперболической модели:
= 60,25-704,48/х.
8.2 Степенная модель
Уравнение степенной модели имеет вид:
=аxb
Для построения этой модели необходимо произвести линеаризацию переменных. Для этого произведем логарифмирование обеих частей уравнения:
lg
= lg a + b lg x.
Обозначим через
Y=lg
, X=lg x, A=lg a.
Тогда уравнение примет вид: Y = A + bX – линейное уравнение регрессии. Рассчитаем его параметры, используя данные таблицы 3.
b =
=
A =
= 1,57-0,64*1,53=0,59
Уравнение регрессии будет иметь вид: Y = 0,59+0,64* Х.
Перейдем к исходным переменным x и y, выполнив потенцирование данного уравнения.
= 100,59* х0,64.
Получим уравнение степенной модели регрессии:
= 3,87* х0,64.
8.3 Показательная модель
Уравнение показательной кривой:
=abx.
Для построения этой модели необходимо произвести линеаризацию переменных. Для этого осуществим логарифмирование обеих частей уравнения:
lg
= lg a + x lg b.
Обозначим: Y = lg
, B = lg b, A = lg a. Получим линейное уравнение регрессии: Y = A + B x. Рассчитаем его параметры, используя данные таблицы 4.
В =
=
А =
= 1,57-0,01*35,6=1,27
Уравнение будет иметь вид: Y = 1,27+0,01х.
Перейдем к исходным переменным x и y, выполнив потенцирование данного уравнения:
=101,27* ( 100,01)х = 18,55*1,02х.
Графики построенных моделей:
Рис.3. Гиперболическая
Рис.4. Степенная
Рис.5. Показательная
9. Сравнение моделей по характеристикам: коэффициенты детерминации, коэффициенты эластичности и средние относительные ошибки аппроксимации. Вывод.
9.1 Гиперболическая модель
Коэффициент детерминации:
=
Вариация результата Y на 70,9% объясняется вариацией фактора Х.
Коэффициент эластичности:
=
= 0,05.
Это означает, что при увеличении фактора Х на 1 % результирующий показатель изменится на 0,05 %.
Бета-коэффициент:
Sx=
=0,01 Sy=
=8,5
60,25*0,01/8,5=0,07.
Т.е. увеличение объема капиталовложений на величину среднеквадратического отклонения этого показателя приведет к увеличению среднего значения объема выпуска продукции на 0,07 среднеквадратического отклонения этого показателя.
Средняя относительная ошибка аппроксимации:
отн = 109,7/ 10= 10,97 %.
В среднем расчетные значения
для гиперболической модели отличаются от фактических значений на 10,97%.
9.2 Степенная модель
Коэффициент детерминации:
=
Вариация результата Y на 73,6% объясняется вариацией фактора Х. Коэффициент эластичности:
=
= 0,57.
Это означает, что при увеличении факторного признака на 1 % результирующий показатель увеличится на 0,57%.
Бета-коэффициент:
, Sy=
и Sx=
.
Sx=
=0,14 Sy=
=0,10
0,59*0,14/0,1=0,78.
Т.е. увеличение объема капиталовложений на величину среднеквадратического отклонения этого показателя приведет к увеличению среднего значения объема выпуска продукции на 0,78 среднеквадратического отклонения этого показателя.
отн=
= 93,77/10 = 9,34%.
В среднем расчетные значения
для степенной модели отличаются от фактических значений на 9,34%.
9.3 Показательная модель
Коэффициент детерминации:
=
Вариация результата Y на 75,7% объясняется вариацией фактора Х. Коэффициент эластичности:
= 28,71.
Это означает, что при росте фактора Х на 1 % результирующий показатель Y изменится на 28,71 %.
Бета-коэффициент:
Sx=
=10,5 Sy=
=0,10
1,27*10,5/0,10=129,10.
Т.е. увеличение объема капиталовложений на величину среднеквадратического отклонения этого показателя приведет к увеличению среднего значения объема выпуска продукции на 129,1 среднеквадратического отклонения этого показателя.
отн= 91,9/ 10 = 9,19%.
В среднем расчетные значения
для показательной модели отличаются от фактических значений на 9,19%.
Вывод
Лучшей из уравнений нелинейной регрессии является показательная: выше коэффициент детерминации, наименьшая относительная ошибка. Модель можно использовать для прогнозирования.
0>Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.
; построить график остатков.
.











