183642 (584746), страница 3
Текст из файла (страница 3)
Достаточное условие идентификации для данного уравнения выполняется.
Второе уравнение. Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид
|
|
| Rt |
|
|
| |
| I уравнение | 0 | 0 | –1 | b12 | b14 | 0 |
| III уравнение | 0 | -1 | b31 | 0 | 0 | 0 |
| Тождество | –1 | 1 | 0 | 1 | 0 | 1 |
Ранг данной матрицы равен трем, так как определитель квадратной подматрицы
не равен нулю:
.
Достаточное условие идентификации для данного уравнения выполняется.
Третье уравнение. Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид
|
|
| Rt |
|
|
| |
| I уравнение | 0 | 0 | –1 | b12 | b14 | 0 |
| II уравнение | 0 | b23 |
| –1 | 0 | b25 |
| Тождество | -1 | 1 | 0 | 1 | 0 | 1 |
Ранг данной матрицы равен трем, так как определитель квадратной подматрицы
не равен нулю:
Достаточное условие идентификации для данного уравнения выполняется.
Таким образом, все уравнения модели сверхидентифицируемы. Приведенная форма модели в общем виде будет выглядеть следующим образом:
Rt = a1 + b11Yt + b13Mt + b15Gt + b16Gt + u1
Yt = a2 + b21Rt + b23It + b25Gt + b26Gt + u 2
It = a3 + b31Rt + b33It + b35Gt + b36Gt + u 3
Сt = a4 + b41Rt + b43It + b45Gt + b46Gt + u 4
Задача 26
Имеются данные об урожайности культур в хозяйствах области:
| Варианты | Показатели | Год | ||||||||||
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |||||
| 4 | Урожайность картофеля, ц/га | 63 | 64 | 69 | 81 | 84 | 96 | 106 | 109 | |||
Задание:
1. Обоснуйте выбор типа уравнения тренда.
2. Рассчитайте параметры уравнения тренда.
3.Дайте прогноз урожайности культур на следующий год.
Решение:
1. Обоснуйте выбор типа уравнения тренда.
Построение аналитической функции для моделирования тенденции (тренда) временного ряда называют аналитическим выравнивание временного ряда. Для этого применяют следующие функции:
-
линейная
-
гипербола
-
экспонента
-
степенная функция
-
парабола второго и более высоких порядков
Параметры трендов определяются обычными МНК, в качестве независимой переменной выступает время t=1,2,…,n, а в качестве зависимой переменной – фактические уровни временного ряда yt. Критерием отбора наилучшей формы тренда является наибольшее значение скорректированного коэффициента детерминации
.
Сравним значения R2 по разным уровням трендов:
Полиномиальный 6-й степени - R2 = 0,994
Экспоненциальный - R2 = 0,975
Линейный - R2 = 0,970
Степенной - R2 = 0,864
Логарифмический - R2 = 0,829
Исходный данные лучше всего описывает полином 6-й степени. Следовательно, для расчета прогнозных значений следует использовать полиномиальное уравнение.
2. Рассчитайте параметры уравнения тренда.
y = - 0,012*531441 + 0,292*59049 – 2,573*6561 +10,34*729 – 17,17*81 + 9,936*9 + 62,25 =
= - 6377,292 + 17242,308 – 16881,453 + 7537,86 - 1390,77 + 89,424 + 62,25 = 282,327
3.Дайте прогноз урожайности культур на следующий год.
Урожайность картофеля, ц/га в 9-ом году приблизительно будет 282 ц/га.
















