183560 (584697)
Текст из файла
Министерство образования и науки Украины
Донбасская государственная машиностроительная академия
Контрольная работа
по дисциплине: «Эконометрика»
Выполнил:
студент гр. ПВ 09-1з
Измайлов А.О.
Проверила:
Гетьман И.
Краматорск 2010
1. Теоретический вопрос
Область прогноза для однофакторной и двухфакторной модели. Точечный прогноз на основании линейной прогрессии.
Область прогнозов находится так: среди выборочных х находят xmin и xmax. Отрезок прямой, заключенный между ними называется областью прогнозов.
Прогнозируемый доверительный интервал для любого х такой .
Совокупность доверительных интервалов для всех х из области прогнозов образует доверительную область, которая представляет область заключения между двумя гиперболами. Наиболее узкое место в точке .
Прогноз для произвольного х дает интервал, в который с вероятностью попадает неизвестное . Т.е. прогноз при заданном х составит от
до
с гарантией
.
Максимальная ошибка прогноза.
Выборочные значения yi равны , где
коэффициенты регрессии для всей генеральной совокупности,
- случайная величина, значение которой мы определить не можем, так как не знаем
.
Для неизвестных коэффициентов могут быть найдены доверительные интервалы, в которые с надежностью попадают
:
,
.
Геометрический смысл коэффициента - ордината пересечения прямой регрессии с осью 0Y, коэффициента
- угловой коэффициент прямой регрессии. Вследствие этого возникает следующая ситуация:
Истинная прямая регрессии может с вероятностью занимать любое положение в доверительной области.
Наиболее максимальное отклонение от расчетного значения - или
. Найдем ошибку прогноза для каждого из значений:
,
.
Т.е. максимальная ошибка прогноза в процентах составляет: , т.е. чем больше полуширина доверительного интервала, тем больше ошибка. Ширина доверительного интервала возрастает с ростом коэффициента доверия и уменьшается с ростом объема выборки со скоростью
. Т.е. увеличив объем выборки в 4 раза, в 2 раза сузим доверительный интервал, т.е. в 2 раза уменьшим ошибку прогноза. С уменьшением коэффициента доверия уменьшается ошибка прогноза, но растет вероятность того, что истинное значение не попадет в доверительный интервал.
Прогноз на основании линейной модели для двуфакторной модели.
Целью регрессионного анализа является получение прогноза с доверительным интервалом. Прогноз делается по уравнению регрессии
(1)
Точка прогноза из p-мерного пространства с координатами
выбирается из области прогноза. Если, например, модель двухфакторная
, то область прогноза определяется прямоугольником, представленным на рис. 1.
Рис. 1
Т.е. область прогноза определяется системой неравенств:
Чтобы получить формулу для вычисления полуширины доверительного интервала, нужно перейти к матричной форме записи уравнения регрессии.
Матричная запись многофакторной регрессии
Данные для построения уравнения регрессии, сведем в таблицу:
Таблица 1
№ набл | Y | X1 | X2 | … | Xp |
1 | y1 | x11 | x12 | x1p | |
2 | y2 | x21 | x22 | x2p | |
… | |||||
n | yn | xn1 | xn2 | xnp |
(2)
Подставляя в уравнение (2) значения из каждой строки таблицы, получим n уравнений.
(2)
ei – случайные отклонения (остатки), наличие которых объясняется тем, что выборочные точки не ложатся в точности на плоскость (1), а случайным образом разбросаны вокруг нее.
Чтобы записать систему (2) в матричном виде, вводим матрицу X, составленную из множителей при коэффициентах b1, b2, …, bp.
Матрица . Размерность матрицы np+1.
Еще вводятся матрицы:
Вектор столбец ,
,
, размерностью n1.
Тогда в матричной форме уравнение регрессии записывается так:
.
Полуширина доверительного интервала рассчитывается по формуле:
,
где - среднее квадратическое отклонение остатков;
- критическая точка распределения Стьюдента, соответствующая уровню доверия =(0.95, 0.99, 0.999) и степени свободы k=n-p-1.
вектор точка из области прогноза.
2. Задача
Найдите коэффициент эластичности для указанной модели в заданной точке x. Сделать экономический вывод.
X=1
-
Найдем производную функции
,
-
Найдем эластичность.
, тогда
-
Коэффициент эластичности для точки прогноза:
X=1
Коэффициент эластичности показывает, что при изменении фактора X =1 на 1% показатель Y уменьшится на 0,5%.
3. Задача
Для представленных данных выполнить следующее задание:
1. Провести эконометрический анализ линейной зависимости показателя от первого фактора. Сделать прогноз для любой точки из области прогноза, построить доверительную область. Найти коэффициент эластичности в точке прогноза.
2. Провести эконометрический анализ нелинейной зависимости показателя от второго фактора, воспользовавшись подсказкой. Сделать прогноз для любой точки из области прогноза, построить доверительную область. Найти коэффициент эластичности в точке прогноза.
3. Провести эконометрический анализ линейной зависимости показателя от двух факторов. Сделать точечный прогноз для любой точки из области прогноза. Найти частичные коэффициенты эластичности в точке прогноза.
Производительность труда, фондоотдача и уровень рентабельности по плодоовощным консервным заводам области за год характеризуются следующими данными:
№ района | Фактор | Уровень убыточности продукции животноводства % | |
Удельный вес пашни в сельскохозяйственных угодьях % | Удельный вес лугов и пастбищ % | ||
1 | 80 | 20 | 20 |
2 | 87,2 | 12,8 | 37,5 |
3 | 90,8 | 9,2 | 43,4 |
4 | 94,7 | 11,3 | 45,6 |
5 | 81,4 | 18,6 | 23,4 |
6 | 79,2 | 10,8 | 25 |
7 | 71,3 | 28,7 | 17,2 |
8 | 86,2 | 13,8 | 33,3 |
9 | 71,4 | 28,6 | 15 |
10 | 77,7 | 22,9 | 18,7 |
11 | 75,4 | 14 | 24,8 |
12 | 77,9 | 13 | 34,5 |
13 | 87,2 | 12,8 | 33,1 |
14 | 68,1 | 25 | 19,2 |
15 | 86,2 | 13,8 | 31,8 |
Нелинейную зависимость принять
Обозначим вес пашни в с/х % – Х, уровень убыточности (%) – У. Построим линейную зависимость показателя от фактора. Найдем основные числовые характеристики. Объем выборки n=15 – суммарное количество наблюдений. Минимальное значение Х=68,1, максимальное значение Х=94,7, значит, удельный вес пашни меняется от 68,1 до 94,7 %. Минимальное значение У=15, максимальное значение У=46,5, уровень убыточности животноводства от 15 до 46,5%. Среднее значение . Среднее значение пашни составляет 80,1%, среднее значение уровня убыточности составляет 28,2%. Дисперсия
= 58,83,
= 92,965. Среднеквадратическое отклонение
7,67, значит среднее отклонение пашни от среднего значения, составляет 7,67%.,
9,64, значит среднее отклонение уровня убыточности от среднего значения, составляет 9,64%. Определим, связаны ли Х и У между собой, и, если да, то определить формулу связи. По таблице строим корреляционное поле (диаграмму рассеивания) – нанесем точки
на график. Точка с координатами
=(80; 27,08) называется центром рассеяния. По виду корреляционного поля можно предположить, что зависимость между y и x линейная. Для определения тесноты линейной связи найдем коэффициент корреляции:
=0,88 Так как
то линейная связь между Х и У достаточная. Пытаемся описать связь между х и у зависимостью
. Параметры b0, b1 находим по МНК.
Так как b1>0, то зависимость между х и y прямая: с ростом пашни уровень убыточности животноводства возрастает. Проверим значимость коэффициентов bi. Значимость коэффициента b может быть проверена с помощью критерия Стьюдента:
-4,608. Значимость
равна 0,000490101, т.е практически 0%. Коэффициент b0 статистически не значим.
6,744. Значимость
равна 1,375·10-5, т.е 0%, что меньше, чем 5%. Коэффициент b1 статистически значим. Получили модель зависимости уровня пашни от убыточности животноводства
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.