183560 (584697), страница 2
Текст из файла (страница 2)
После того, как была построена модель, необходимо проверить ее на адекватность.
Для анализа общего качества оцененной линейной регрессии найдем коэффициент детерминации: =0,777. Разброс данных объясняется линейной моделью на 77,7% и на 22,3% – случайными ошибками. Качество модели плохое.
Проверим с помощью критерия Фишера.
Для проверки найдем величины: 1012,166 и
1012,166. Вычисляем k1=1, k2=13. Находим наблюдаемое значение критерия Фишера
45.48. Значимось этого значения =1,37610-5, т.е. процент ошибки равен 0%, что меньше, чем 5%. Модель
считается адекватной с гарантией более 95%.
Найдем прогноз на основании линейной регрессии. Выберем произвольную точку из области прогноза , х=80
Рассчитываем прогнозные значения по модели для всех точек выборки и для точки прогноза:
Найдем полуширину доверительного интервала в каждой точке выборки xпр:
е – средне квадратичное отклонение выборочных точек от линии регрессии
4,72
ty = критическая точка распределения Стьюдента для надежности =0,9 и k2=13.
n =15.
или
xпр – точка из области прогнозов.
Прогнозируемый доверительный интервал для любого х такой , где (х=80)=10,53, т.е. доверительный интервал для хпр=80 составит от 16,55 до 37,61 с гарантией 90%.
Совокупность доверительных интервалов для всех х из области прогнозов образует доверительную область.
Т.е. при пашни 80 % уровень убытка животноводства составит от 16% до 37,5%.
Найдем эластичность.
Для линейной модели
Коэффициент эластичности показывает, что при изменении х=80 на 1% показатель y увеличивается на 3,29%.
Обозначим пашни в с/х – Х, уровень убыточности – У. Построим нелинейную зависимость показателя от фактора вида
. Найдем основные числовые характеристики. Объем выборки n=15 – суммарное количество наблюдений.
Минимальное значение Х=9.2, максимальное значение Х=28.7, значит, площадь пашен изменяется от 9.2 до 28.7%. Минимальное значение У=15, максимальное значение У=45.6, уровень убыточности животноводства изменяется от 15 до 45.6%. Среднее значение . Среднее значение пашни составляет 17.02%, среднее значение уровня убыточности животноводства составляет 28.17%.
Дисперсия =42.45,
=92.965.
Среднеквадратическое отклонение 6.52, значит среднее отклонение объема пашни от среднего значения, составляет 6.52%,
9.64, значит среднее отклонение уровня убыточности животноводства от среднего значения, составляет 9.64%.
Определим, связаны ли Х и У между собой, и, если да, то определить формулу связи. По таблице строим корреляционное поле (диаграмму рассеивания) – нанесем точки на график.
Точка с координатами =(17.02; 28.17) называется центром рассеяния.
По виду корреляционного поля можно предположить, что зависимость между y и x нелинейная.
Пытаемся описать связь между х и у зависимостью . Перейдем к линейной модели. Делаем линеаризующую подстановку:
,
. Получили новые данные U и V. Для этих данных строим линейную модель:
Проверим тесноту линейной связи u и v. Найдем коэффициент корреляции: 0,864. Между u и v сильная линейная связь.
Параметры b0, b1 находим по МНК.
Проверим значимость коэффициентов bi. Значимость коэффициента b может быть проверена с помощью критерия Стьюдента:
=0.845. Значимость
равна 0,413, т.е практически 41%. Коэффициент b0 статистически не значим.
6.19 Значимость
равна 0,000032, т.е практически 0%. Коэффициент b1 статистически значим.
Получили линейную модель
После того, как была построена модель, необходимо проверить ее на адекватность.
Для анализа общего качества оцененной линейной регрессии найдем коэффициент детерминации: =0,747. Разброс данных объясняется линейной моделью на 75% и на 25% – случайными ошибками. Качество модели хорошее.
Проверим с помощью критерия Фишера.
Для проверки находим величины: 972.42 и
25.32. Вычисляем k1=1, k2=13. Находим наблюдаемое значение критерия Фишера
38.41. Значимось этого значения =0,000032, т.е. процент ошибки практически равен 0%. Модель
считается адекватной с гарантией более 99%.
Так как линейная модель адекватна, то и соответствующая нелинейная модель тоже адекватна.
Находим параметры исходной нелинейной модели: а=b1=370.76; b= b0=3.53.
Вид нелинейной функции: .
Т.е. зависимость уровня убыточности от площади пашен имеет вид: .
Найдем прогноз на основании модели. Выберем произвольную точку из области прогноза [9.2; 28.7], х=15
Рассчитываем прогнозные значения по модели для всех точек выборки и для точки прогноза: 28.25
Найдем полуширину доверительного интервала в каждой точке выборки. Для этого найдем полуширину для линейной модели:
е – средне квадратичное отклонение выборочных точек от линии регрессии 5.03
uпр – точка из области прогнозов. Прогнозируемый доверительный интервал для любого u такой
Для нелинейной модели найдем доверительный интервал, воспользовавшись обратной заменой: Совокупность доверительных интервалов для всех х из области прогнозов образует доверительную область.
Прогноз для х=15 составит от 17.03 до 39.48 с гарантией 90%.
Т.е. при площади пашен 15 уровень убыточности животноводства составит от 17.03% до 39.48%.
Найдем эластичность.
Коэффициент эластичности для точки прогноза:
,
Коэффициент эластичности для точки прогноза:
Коэффициент эластичности показывает, что при изменении площади паши 15 % на 1% уровень убыточности животноводства увеличивается на 13.12%.
Обозначим удельный вес пашни – Х1 %, удельный вес лугов и пастбищ - Х2 %, уровень убыточности продукции животноводства - У %. Построим линейную зависимость показателя от факторов. Найдем основные числовые характеристики. Объем выборки n=15 – суммарное количество наблюдений. Минимальное значение Х1=68.1, максимальное значение Х1=94.7, значит, удельный вес пашни изменяется от 68.1 до 94.7%. Минимальное значение Х2=9.2, максимальное значение Х2=28.7, значит, вес лугов и пастбищ изменяется от 9.2 до 28.7%. Минимальное значение У=15, максимальное значение У=45.6, уровень убыточности животноводства изменяется от 15 до 45.6%. Среднее значение .
Среднее значение веса пашни составляет 80.98 %, среднее значение веса лугов и пастбищ составляет 17.02, среднее значение уровня убыточности животноводства составляет 28.17%.
Дисперсия =58,83,
=42,45
=92.96%.
Среднеквадратическое отклонение 7.67, значит среднее отклонение веса пашни от среднего значения, составляет 7.67%., среднеквадратическое отклонение
6.52, значит среднее отклонение удельного веса лугов и пастбищ от среднего значения, составляет 6.52%,
9.65, значит среднее отклонение уровня убыточного животноводства от среднего значения, составляет 9.65%.
Прежде чем строить модель, проверим факторы на коллинеарность. По исходным данным строим корреляционную матрицу. Коэффициент корреляции между X1 и X2 равен 0,89. Так как , значит X1 и X2 – неколлинеарные
Определим, связаны ли Х1, Х2 и У между собой.
Для определения тесноты линейной связи найдем коэффициент корреляции: r=0,892. Так как то линейная связь между Х1, Х2 и У достаточная.
Пытаемся описать связь между х и у зависимостью .
Параметры b0, b1, b2 находим по МНК. .
Проверим значимость коэффициентов bi.
Значимость коэффициента b может быть проверена с помощью критерия Стьюдента:
-0,867. Значимость
равна 0.402, т.е приблизительно 40%. Так как это значение намного больше 5%, то коэффициент b0 статистически не значим.
3.04. Значимость
равна 0.0102, т.е 1%. Так как это значение меньше 5%, то коэффициент b1 статистически значим.
-2.107. Значимость
равна 0.056, т.е 5%. Так как это значение больше 5%, то коэффициент b2 статистически не значим.
Проверим адекватность.
Для анализа общего качества оцененной линейной регрессии найдем коэффициент детерминации: =0,8377. Разброс данных объясняется линейной моделью на 84% и на 16% – случайными ошибками. Качество модели хорошее.
Проверим с помощью критерия Фишера.
Для проверки найдем величины: 545.17 и
17.6. Вычисляем k1=2, k2=12. Находим наблюдаемое значение критерия Фишера
30.98 Значимость этого значения =0.000018, т.е. процент ошибки равен 0,00018%. Так как это значение меньше 5%, то модель
считается адекватной с гарантией более 99%.
Получили модель зависимости уровня удельного веса пашни от удельного веса лугов и пастбищ и убыточности скотоводства
Найдем прогноз на основании линейной регрессии. Выберем произвольную точку из области прогноза: х1=80, х2=30. Рассчитываем прогнозные значения по модели для всех точек выборки и для точки прогноза:
Т.е. при удельном весе пашен 80% и весе лугов и пастбищ 30% уровень убыточности животноводства составит 19.86%.
Найдем эластичность по каждому фактору.
Для линейной модели
,
.
Коэффициент эластичности показывает, что увеличении пашен с 80 % на 1% и при уровне лугов 30 %, уровень убыточности увеличится с 19.86 грн на 2.89%.