180808 (584081), страница 2

Файл №584081 180808 (Анализ данных в линейной регрессионной модели) 2 страница180808 (584081) страница 22016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

.

Задание 7. Для негруппированных данных проверить значимость линейной регрессии Y на x (уровень значимости α = 0,05).

Гипотеза : отклоняется на уровне значимости , так как доверительный интервал не накрывает нуль с доверительной вероятностью 0,95.

Этот же результат можно получить, используя для проверки гипотезу : и статистику .

С помощью Matlab найдем квантили распределения Фишера:

, .

Выборочное значение статистики равно:

.

Поскольку , то гипотеза : отклоняется на уровне значимости . Таким образом, линейная регрессия на статистически значима.

Задание №8

Для данных, сгруппированных только по , проверить адекватность линейной регрессии на (уровень значимости ).

Для проверки адекватности воспользуемся корреляционной таблицей. Будем считать, что середины интервалов группировки , , являются значениями компоненты . Тогда число повторных наблюдений равно 4. Запишем результаты этих наблюдений в виде таблицы

Таблица 1.2

2,5

5,5

8,5

11,5

11,94

12,34

14,68

9,87

11,52

9,71

14,61

9,66

11,19

8,54

10,73

10,13

5,38

9,19

8,09

16,35

7,70

7,41

10,51

9,97

9,87

4,39

6,48

7,77

4,76

3,72

14,32

10,64

5,79

9,13

10,33

7,15

5,64

4,52

4,52

3,57

3,14

4,05

2,22

3,57

4,95

-2,23

4,52

2,06

3,11

2,88

4,58

6,78

2,15

3,87

13

17

12

8

10,79

8,59

9,65

3,74

Для удобства расчетов в последней строке таблицы приведены средние значения , .

.

Получим уравнение выборочной линейной регрессии на для данных, сгруппированных по :

;

, , , , ;

y(x) = 8,29 – 0,9x.

;

.

Выборочное значение статистики равно

.

Так как квантиль распределения Фишера, вычисленный с помощью Matlab, равен

3,19,

то , а значит, линейная регрессия на для данных, сгруппированных по , адекватна результатам наблюдений.

Задание 9. Для негруппированных данных проверить гипотезу : при альтернативной гипотезе : (уровень значимости )

Имеются следующие величины: , , , , .

Сначала проверяется гипотеза : , альтернативная гипотеза : .

Статистика равна

= 1,931

С помощью средств Matlab, найдем:

F0,975 (n-1; n-1)=F0,975 (49,49) = 1.7622

z > F0,975 (n-1; n-1),

следовательно отклоняется, а значит что

Теперь можно проверить гипотезу, : , при альтернативной гипотезе : .

Т.к. , статистика имеет вид

= 1,418

Найдем количество степеней свободы

≈3,625

С помощью средств Matlab, найдем:

z < , значит нет оснований отклонять гипотезу : .

Приложение

A = [ 4.19 3.04 4.60 9.83 8.66 1.30 4.22 5.11 9.85 8.80 12.17 11.25 5.73 4.05 5.41 1.28 1.67 11.99 7.66 5.17 3.26 12.58 8.34 5.79 3.42 4.44 11.31 7.57 1.62 5.71 11.06 10.35 2.46 1.02 5.77 8.63 6.91 3.56 9.47 6.16 8.26 6.70 4.95 3.37 1.53 9.54 3.11 5.09 11.08 8.74;

9.19 11.94 8.09 10.33 7.15 12.34 16.35 7.70 5.64 4.52 4.52 2.06 7.41 10.51 9.97 14.68 9.67 3.31 5.93 9.87 11.52 2.88 3.57 4.39 9.71 9.13 4.58 3.14 14.61 6.48 6.78 2.15 9.66 11.19 7.77 4.05 4.76 8.54 2.22 3.72 3.57 14.32 10.64 10.73 10.13 4.95 5.38 5.79 3.87 -2.23]

x = A(1,:);

y = A(2,:);

Mx = mean(x)

Dx = var(x,1)

My = mean(y)

Dy = var(y,1)

plot(x,y,'g*')

grid on

hold on

axis([1 13 -3 18]);

gca1 = gca;

set(gca1,'xtick',[1 4 7 10 13],'ytick',[-3 0 3 6 9 12 15 18]);

xlabel('X');

ylabel('Y');

z = 12.77 - 0.848*x; %построение регрессии Y на x

Zplot = plot(z,x);

set(Zplot,'Color','Red','LineWidth',[2])

hold on

text(12, -1,'x(y)');

text(11.8, 2,'y(x)');

t = 10.86 - 0.6*y; %построение регрессии X на y

Tplot = plot(t,y);

set(Tplot,'Color','Red','LineWidth',[2])

hp = line([1 6.36],[7.38 7.38]); %эти прямые показывают положение

set(hp,'Color','blue','LineWidth',[1.5]) %среднего выборочного

hp = line([6.36 6.36],[-3 7.38]);

set(hp,'Color','blue','LineWidth',[1.5])

K = cov(x,y) %находим ковариацию

DEtK = det(K)

M = corrcoef(x,y) %коэффициент корреляции

detM = det(M)

Характеристики

Тип файла
Документ
Размер
2,46 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6521
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее