179253 (583739), страница 3
Текст из файла (страница 3)
=249 + 186 = 435
Средняя из групповых дисперсий:
=
=
Групповая дисперсия равна:
=
0.428 или 42,8%
Это означает, что выпускаемая продукция на 42,8% зависит от среднесписочной численности работников, а на 57,2% - от других факторов.
-
Эмпирическое корреляционное отношение.
Чем значение корреляционного отношения ближе к единице, тем теснее, ближе к функциональной зависимости связь между признаками.
В нашем примере
, что свидетельствует (из соотношения Чэддока) о тесной связи (0,7 – 0,9) между выпуском продукции и среднесписочной численностью работников.
ЗАДАНИЕ 3
По результатам выполнения задания 1 с вероятностью 0,683 определите:
-
Ошибку выборки среднесписочной численности работников и границы, в которых будет находиться среднесписочная численность работников в генеральной совокупности.
-
Ошибку выборки доли предприятия со среднесписочной численностью работников 180 и более человек и границы, в которых будет находиться генеральная доля.
РЕШЕНИЕ
1. Для определения среднесписочной численности работников на предприятиях была произведена 20% - ная механическая выборка, в которую попало 30 предприятий. В результате обследования было установлено, что средняя арифметическая среднесписочной численности работников 173 чел. При среднем квадратическом отклонении 23 чел.
Границы, в которых будет находиться среднесписочная численность работников в генеральной совокупности
Т.к. выборка механическая, предельная ошибка выборки определяется по формулам:
где N – объем генеральной совокупности (число входящих в нее единиц). Т.к. выборка 20% - ная, то N=150 (5*30).
20% - ная выборка означает, что отбирается и проверяется каждая 5-ая единица (1:0,2).
n – объем выборки (число обследованных единиц) = 30 предприятий.
- генеральная дисперсия (дисперсия признака в генеральной совокупности).
t = 1 (из таблицы значений интегральной функции Лапласа при заданной вероятности 0,683)
чел.
С вероятностью 0,683 можно утверждать, что среднесписочная численность работников находится в пределах
или
2. Доля предприятий со среднесписочной численностью работников 180 и более человек находится в пределах:
Выборочная доля составит:
=11/30=0,37,
где m – доля единиц, обладающих признаком;
n – численность выборки.
Ошибка выборки генеральной доли составит:
или 7,9%
С вероятностью 0,683 можно утверждать, что доля предприятий со среднесписочной численностью работников 180 чел. и более будет находиться в пределах p = 37%
7.9% или 29,1%
p
44,9%.
ЗАДАНИЕ 4
Имеются следующие данные по двум предприятиям отрасли:
| № пр – я п/п | Выпуск продукции, тыс.руб. | Среднесписочная численность рабочих, чел. | ||
| Базисный период | Отчетный период | Базисный период | Отчетный период | |
| 1 2 | 6400 4800 | 6000 6000 | 100 60 | 80 60 |
Определите:
-
По каждому предприятию уровни и динамику производительности труда. Результаты расчетов представьте в таблице.
-
По двум предприятиям вместе:
-
индексы производительности труда (переменного, постоянного состава, структурных сдвигов);
-
абсолютное изменение средней производительности труда за счет отдельных факторов.
-
Сделайте выводы.
РЕШЕНИЕ
1. Для характеристики уровня производительности труда в статистической практике используют выработку.
Выработка W характеризует количество продукции, производимой на одного работника. Она является прямым показателем производительности труда – чем больше выработка, тем выше производительность труда.
W=П/T, где W – средняя выработка; П – количество произведенной продукции; T – численность работников.
П=WT
Результаты расчетов представим в таблице 4.1.
Таблица 4.1.
Характеристика уровней производительности труда
| № пр – я п/п | Производительность труда, тыс.руб./чел. | Численность работников, чел. | Выпуск продукции, тыс.руб. | |||
| Базисный период | Отчетный период | Базисный период | Отчетный период | Базисный период | Отчетный период | |
|
|
|
|
|
|
| |
| 1 2 | 64 80 | 75 100 | 100 60 | 80 60 | 6400 4800 | 6000 6000 |
| Итого | - | - | 160 | 140 | 11200 | 12000 |
2. Рассчитаем по двум предприятиям вместе индексы производительности труда:
-
индекс переменного состава.
Для исчисления индекса производительности труда переменного состава по двум предприятиям вместе вначале определим среднюю производительность труда, тыс.руб./чел.:
в базисный период
=
70;
в отчетный период
85.7.
Теперь исчислим индекс средней производительности труда переменного состава:
1.224 или 122, 4%
Следовательно, средняя производительность труда по двум предприятиям вместе в отчетном периоде по сравнению с базисным увеличилась на 22,4%.
-
Индекс постоянного состава.
Определим, в какой мере изменение производительности труда произошло в результате изменения только производительности труда на отдельных предприятиях. Для этого сравним среднюю производительность труда в отчетном периоде со средней производительностью труда в базисном периоде при одинаковой численности работников (отчетный период) на основе индекса постоянного состава:
=1,21 или 121%
Исчисленный индекс характеризует общее изменение производительности труда на отдельных предприятиях. Средняя производительность труда в отчетном периоде по сравнению с базисным в результате изменения только производительности труда на отдельных предприятиях выросла на 21%.
-
Индекс структурных сдвигов.
Определим, в какой мере изменение средней производительности труда произошло в результате изменения только среднесписочной численности рабочих. Для этого сравним среднюю производительность труда в отчетном периоде со средней производительностью труда в базисном периоде при производительности труда на отдельных предприятиях на уровне базисного периода, т.е. исчислим индекс структурных сдвигов:
=
=1,012 или 101,2%
Индекс показывает, что средняя производительность труда в результате изменения численности рабочих выросла дополнительно на 1,2%.
-
Абсолютное изменение средней производительности труда за счет отдельных факторов.
Абсолютное изменение средней производительности труда составило:
85.7–70=15.7тыс.руб./чел., что привело к увеличению количества выпускаемой продукции на 800 тыс. руб., т.е. (12000 – 11200)
Изменение средней производительности труда происходило под влиянием двух факторов: изменения производительности труда на отдельных предприятиях и изменения среднесписочной численности рабочих.
Абсолютное изменение средней производительности труда за счет изменения производительности труда на отдельных предприятиях составит: 85,7 – 70,9 = 14,8 тыс.руб./чел.
Абсолютное изменение средней производительности труда в результате изменения численности рабочих составило: 70.86 – 70 = 0.86 тыс.руб./чел.
Общий вывод: если бы происшедшие изменения производительности труда не сопровождались структурными перераспределениями на предприятиях, то средняя производительность труда по двум предприятиям возросла бы на 21%. Изменение структуры выпуска продукции на отдельных предприятиях в общем объеме выпуска вызвало повышение средней производительности труда на 1,2%. Одновременное воздействие двух факторов увеличило среднюю производительность труда по двум предприятиям на 22,4%.
















