151300 (580561)

Файл №580561 151300 (Механика сплошной среды)151300 (580561)2016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

МЕХАНИКА СПЛОШНОЙ СРЕДЫ

ОСНОВНЫЕ ЗАКОНЫ МЕХАНИКИ СПЛОШНОЙ СРЕДЫ

1. Сохранение массы. Уравнение неразрывности

Материальный континуум обладает свойством, называемым массой. Суммарная масса некоторой части сплошной среды, занимающей в момент t объем пространства V, выражается интегралом

(1.1)

где - непрерывная функция координат, называемая плотностью. Закон сохранения массы, утверждает, что масса выделенной части среды остается постоянной и, следовательно, материальная производная от (1.1) равна нулю. Если в формуле (4.52) положить P'ij. (x, t) ss р (х, 0, то получим выражение для скорости изменения массы т

(1.2)

Поскольку это равенство верно для произвольного объема V, подинтегральное выражение само должно обращаться в нуль, т. е.

или (1.3)

Это уравнение называется уравнением неразрывности (или непрерывности). Раскрывая оператор материальной производной, его можно написать в другой равнозначной форме

, или (1.4)

В несжимаемой среде плотность массы каждой частицы не зависит от времени, т. е. , и уравнение (1.3) принимает вид

, или . (1.5)

Поле скорости в несжимаемой среде можно поэтому представить выражением

или , (1.6)

где функция называется векторным потенциалом .

Уравнение неразрывности можно записывать в лагранжевой, или материальной, форме. Для сохранения массы требуется, чтобы выполнялось уравнение

. (1.7)

Здесь оба интеграла взяты по одним и тем же частицам, т. е. V - это объем, который теперь занимает среда, заполнявшая в момент t = 0 объем . Используя (4.1) и (4.38), интеграл в правой части (1.7) можно преобразовать следующим образом:

(1.8)

Соотношение (1.8) должно иметь силу для произвольно выбранного объема , и поэтому

(1.9)

Это означает, что произведение не зависит от времени, так как объем V произволен, т. е. что

(1.10)

Уравнение (1.10) является лагранжевой дифференциальной формой уравнения неразрывности.

2. Теорема об изменении количества движения. Уравнения движения

Уравнения равновесия

На рис. 2.1 изображен движущийся объем сплошной среды V в момент t. На него действуют массовые силы с плотностью распределения . На каждом бесконечно малом элементе поверхности, ограничивающей рассматриваемый объем, действует вектор напряжения . Во всей области, занятой средой, определено поле скоростей . Общее количество движения системы масс, заполняющих объем V, определяется интегралом

. (2.1)

Основываясь на втором законе Ньютона, теорема об изменении количества движения утверждает, что скорость изменения со временем количества движения некоторой части континуума равна результирующей сил, действующих на рассматриваемую область. Если внутренние силы, действующие между частицами данного объема (рис. 2.1), подчиняются третьему закону Ньютона о действии и противодействии, то теорема об изменении количества движения для этой системы масс выражается уравнением

,

или (2.2)

.

После подстановки в первый интеграл и преобразования интеграла по поверхности в интеграл по объему (согласно теореме Гаусса — Остроградского) это уравнение примет вид

или (2.3)

Распишем материальную производную правой части (2.3) и воспользуемся уравнением неразрывности в форме (1.10). Это даст

. (2.4)

Подстановка этого выражения в правую часть (2.3) и объединение членов приводят к интегральной форме теоремы об изменении количества движения:

или (2.5)

Так как объем V произволен, само подинтегральное выражение (2.5) должно обращаться в нуль. Полученные таким образом уравнения

, или (2.6)

называются уравнениями движения.

Для случая равновесия, когда отсутствуют ускорения, из (2.6) получаются уравнения, называемые уравнениями равновесия

, или (2.7)

3. Теорема об изменении момента количества движения

Будем предполагать, что момент количества движения для сплошной среды равен моменту вектора количества движения относительно какой-либо точки. Так, для части континуума, изображенной на рис. 2.1, полный момент количества движения относительно начала координат по определению равен интегралу

, или , (3.1)

где - радиус-вектор элемента объема dV. Теорема об изменении момента количества движения утверждает, что скорость изменения момента количества движения произвольно выбранной части континуума относительно любой точки равна главному моменту (относительно той же точки) массовых и поверхностных сил, действующих на рассматриваемую область среды. Для объема V сплошной среды можно написать уравнение момента количества движения в интегральной форме:

,

или (3.2)

Уравнение (3.2) справедливо для таких сред, в которых силы взаимодействия частиц равны по величине, коллинеарны и противоположны по направлению, а распределенные моменты отсутствуют. Уравнение момента количества движения не всегда представляет собой новое дифференциальное уравнение. Если в (3.2) подставить и предположить симметрию тензора напряжений, то уравнение будет удовлетворено тождественно при учете только соотношения (2.6). Если же симметрия тензора напряжений не предполагается заранее, то она получается как прямое следствие уравнения (3.2), которое после подстановки сводится к виду

, или (3.3)

В силу произвольности объема V это ведет к равенствам

, или , (3.4)

откуда видно, что .

ЗАДАНИЕ ДЛЯ РАСЧЕТНОЙ РАБОТЫ

По заданному в эйлеровых координатах закону распределения компонент тензора истинных напряжений, полагая плотность постоянной, определить:

  1. Закон распределения массовых сил, при котором среда находится в равновесии.

  2. Построить эпюры нормальных и касательных составляющих вектора напряжений на границе куба со сторонами .

  3. Найти главный вектор поверхностных (определить нормальную и касательную составляющие) сил и массовых сил.

  4. Найти главный момент поверхностных и массовых сил. Убедиться в их равновесии.

  5. Полагая массовые силы отсутствующими, найти поле ускорений в эйлеровых координатах.

Выполнение расчетной работы

По заданному в эйлеровых координатах закону распределения компонент тензора истинных напряжений, полагая плотность постоянной, определить:

  1. Определим закон распределения массовых сил, при котором среда находится в равновесии, для этого составим уравнение движения:

Условие равновесия: .

  1. Построить эпюры нормальных и касательных составляющих вектора напряжений на границе куба со сторонами .

Построим нормальные составляющие.




Построим касательные составляющие.


  1. Найти главный вектор поверхностных (определить нормальную и касательную составляющие) сил и массовых сил.

Найдем главный вектор массовых сил: .

Найдем главный вектор поверхностных сил: .

Т.к. , то система находится в равновесии.

  1. Найти главный момент поверхностных и массовых сил. Убедиться в их равновесии.

Найдем главный момент поверхностных сил относительно центра заданного объема, т.е. параллепипида со сторонами 3x2x1.

Найдем главный момент массовых сил:

Но , поэтому и условие равновесия автоматически выполняется.

  1. Полагая массовые силы отсутствующими, найти поле ускорений в эйлеровых координатах.

Характеристики

Тип файла
Документ
Размер
2,37 Mb
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6525
Авторов
на СтудИзбе
301
Средний доход
с одного платного файла
Обучение Подробнее