150737 (580476), страница 2

Файл №580476 150737 (Расчет индуктивности) 2 страница150737 (580476) страница 22016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

где D – диаметр кольца по центру сечения; d – диаметр провода.

  1. Круговое кольцо из провода квадратного сечения:

;

где a – сторона поперечного сечения провода.

При высоких частотах

.

3. Круговое кольцо из тонкой ленты:

,

где а – ширина ленты.

  1. Контур в виде правильного многоугольника (при условии, что длина провода значительно больше периметра его сечения):

,

где l – длина провода; A = 4l / d – для круглого провода с диаметром d; A = 2 l / (a + b) – для провода прямоугольного сечения со сторонами а и b; В – коэффициент, зависящий от числа сторон n. Его значения в табл. 3.

Табл. 3. Зависимость коэффициента В от числа сторон многоугольника n.

N

3

4

5

6

8

B

3,197

2,853

2,712

2,636

2,561

Формулой можно воспользоваться также для расчета индуктивности кругового витка, принимая В = 2,451.

Одиночный прямолинейный провод:

  1. Провод кругового сечения.

На низких частотах

, при ,

где l – длина провода; погрешность расчета по формуле не более 5%.

При высоких частотах

, при ,

погрешность формулы не более 6%.

  1. Провод прямоугольного сечения.

На низких частотах

,

где a, b – стороны поперечного сечения провода.

Приближенно на высоких частотах

при ;

при .

3. Полый провод круглого сечения:

,

где D – наружный диаметр провода; d – внутренний диаметр провода; k – коэффициент, значения которого в табл. 3.

Табл. 3. Зависимость k от географических размеров катушки.

d / D

0,0

0,1

0,2

0,3

0,4

0,5

k

0,779

0,782

0,793

0,809

0,829

0,852

d / D

0,6

0,7

0,8

0,9

1,0

k

0,878

0,906

0,936

0,967

1,000

На высоких частотах формула остается справедливой, если принять k = 1.

4. Полый провод квадратного сечения.

На низких частотах

.

На высоких частотах

,

где l – длина провода; а – внешняя сторона контура поперечного сечения; t - толщина стенки ( ).

Система прямолинейных проводов:

  1. Два параллельных провода (прямой и обратный):

а) для проводов круглого сечения одинакового диаметра на низких частотах

.

На высоких частотах

,

где t – расстояние между осями проводов; d – диаметр провода; l – длина провода.

б) для одинаковых проводов прямоугольного сечения на низких частотах

L = 4*10-3 ,

где t – расстояние между центрами сечений; a и b – стороны сечения.

в) для проводов различных сечений

L = L1 + L2 – 2M,

где L1 и L2 – индуктивности каждого провода; М – взаимная индуктивность.

  1. Проводник – земля. Индуктивность определяют по формулам параллельных проводов; значение ее вдвое меньше, чем вычисленное для системы прямого и обратного проводов при t = 2h (h – расстояние до поверхности земли).

Формулы справедливы при h » λ33 – длина электромагнитных колебаний в земле).

Для приближенных расчетов

L = 2*10-3 l .

3. Коаксиальный кабель:

L = 2*10-3 l ,

где l – длина кабеля; D – внутренний диаметр наружного цилиндра; d – внешний диаметр внутреннего цилиндра; k – коэффициент, зависящий от частоты.

4. Пучок равноудаленных параллельных проводов (ориентировочно):

L= ,

где n – число проводов; d – диаметр отдельного провода; R – радиус размещения проводов (расстояние от центра пучка до центра любого провода);

K = .

Значение К в зависимости от числа проводов n приведены в табл. 4

Табл. 4. Зависимость К от числа проводов n.

n

2

3

4

5

7

10

12

15

K

0,56

0,49

0,44

0,41

0,36

0,31

0,30

0,28

Конденсаторные секции.

  1. Плоская конденсаторная секция:

,

где l – длина электрода; d – толщина диэлектрода; b – ширина диэлектрода.

Предполагается, что b»d»a (а – толщина электрода).

Если имеет место только неравенство d«b»a, то

.

  1. Плоская конденсаторная секция, состоящая из нескольких параллельно соединенных элементов:

,

где l – длина секции (в направлении между торцами обкладок); , где a и b – ширина и толщина секции.

  1. Цилиндрическая намотанная секция с выступающими обкладками (так называемая безындукционная намотка). Расчет индуктивности можно проводить по формуле для провода круглого сечения, принимая, что l – длина секции (в направлении между торцами обкладок), d – наружный диаметр секции.

Провод кругового сечения, изогнутый по дуге окружности:

,

где R – радиус окружности, по дуге которой изогнут провод; Ө - центральный угол, соответствующий длине провода; 0≤Ө≤2π; d – диаметр провода; k1 – коэффициент, которого на рис. 4; k2 = 1,02 для низких и средних частот; k2 = 0,77 для высоких частот.

В частном случае, когда

«1,

Катушки индуктивности на замкнутых сердечниках

Сердечники тороидальной формы

1. Обмотка на каркасе. При массивных измерениях магнитных параметров сердечников иногда используют разъемные обмотки, вмонтированные в каркас прямоугольного сечения, внутрь которого помещают тороидальные сердечники (табл. 5.).

Табл. 5. Расчет индуктивности катушек на сердечниках тороидальной формы.

Вариант геометрии сечения

Приближенные формулы

Уточненные формулы

Отношение величин h, вычисленных по приближенным формулам, к величинам, вычисленным по уточненным формулам.

Связь между магнитной проницаемостью материала сердечника μr и индуктивностью катушки L в этом случае устанавливает формула

,

где S и SК – площади поперечных сечений сердечников и каркаса;

,

где DK и dK – наружный и внутренний диаметры каркаса.

  1. Неполная обмотка (рис. 4.).

;

;

где S – сечение магнитопровода; lср – длина средней линии магнитопровода; pср – периметр среднего витка.

Катушки индуктивности на разомкнутых сердечниках

Катушки на сердечниках с малыми зазорами.

Приведенные формулы справедливы при условии δ « а, где δ – ширина зазора; а – любой линейный размер поперечного сечения магнитопровода:

; μr > 1;

; μr » 1;

; μr→ ∞,

где N – коэффициент размагничивания.

Сердечники с большими воздушными зазорами.

Формулы для случая малых зазоров были выведены в предположении, что поле в зазоре близко к однородному и величина потоков рассеяния пренебрежимо мала по сравнению с рабочим потоком. Если же магнитопровод содержит воздушный зазор, для которого не выполняется условие δ « а, то с целью сохранения формы записи соотношений для расчета магнитной цепи, справедливых при малых зазорах, целесообразно ввести понятие об эквивалентном зазоре.

Наиболее удобным, оказалось, определить эквивалентный зазор как такой, который имеет ту же проводимость, что и реальный; а геометрия его определяется сечением полюсов магнитопровода и некоторой эквивалентной длиной δЭ. при этом все формулы для сердечников с зазором остаются справедливыми при подстановке в них δЭ вместо δ.

На практике часто встречаются полюса магнитопровода в виде двух прямоугольных призм, расположенных друг против друга. Выражение для δЭ в этом случае имеет вид

(обмотка не перекрывает зазора) или

(обмотка перекрывает зазор), где δ – геометрическая длина зазора; p – периметр сечения магнитопровода у зазора; S – сечение магнитопровода у зазора (т. е. сечение полюса); 2с – высота обмотки; а – расстояние от сердечника до средней линии продольного сечения обмотки (т. е. приближенно полуширина обмотки).

Катушки индуктивности с немагнитными сердечниками

Немагнитные сердечники в катушках индуктивности используются в качестве элементов подстройки при работе в области высоких частот. Влияние таких сердечников на параметры катушек аналогично влиянию экрана, т.е. приводит к уменьшению индуктивности и добротности и к увеличению вносимого сопротивления и емкости.

Экран и немагнитный сердечник могут в известном приближении рассматриваться как короткозамкнутый виток, индуктивно связанный с катушкой.

Потери в катушках индуктивности. Добротность

Определение потерь в катушках индуктивности является существенны, главным образом, с точки зрения их влияния их (потерь) на характеристики схемы, в которую катушки входят. Значительно реже вычисление потерь представляет интерес с точки зрения мощности, дополнительно затрачиваемой источником питания (или источником сигнала); эта мощность может, кроме того, привести к нежелательному изменению теплового режима элементов.

Общая формула для добротности имеет вид

,

где Rэ – эквивалентное сопротивление, учитывающее потери в катушке (в обмотке и сердечнике).

В связи с тем, что катушки обладают собственной емкостью, существует некоторая частота ƒ0 (собственная, или резонансная), вблизи которой емкость оказывает существенное влияние на добротность (из-за изменений действующих индуктивности и сопротивления).

Влияние собственной емкости на добротность катушки описывается формулой

∆Q = -Q (ƒ / ƒ0)2,

где ∆Q – уменьшение добротности Q при работе на частоте ƒ < ƒ0.

Из-за приближенного характера формул для определения ƒ0 и для учета его влияния на добротность практически величиной ∆Q можно пренебречь уже при ƒ ≤ ƒ0 / 3.

Потери в катушках складываются из следующих составляющих: потери в проводе; диэлектрические потери в каркасе и изоляции провода; потери в сердечнике.

Характеристики

Тип файла
Документ
Размер
1,1 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6527
Авторов
на СтудИзбе
301
Средний доход
с одного платного файла
Обучение Подробнее