86385 (575074), страница 3

Файл №575074 86385 (Новый метод решения кубического уравнения) 3 страница86385 (575074) страница 32016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

D2 = 2 (2mn)12 = 2 (g1 - g2 )2 = - 2( 3c – b2 ) = 2( b2 – 3c )

→ (g1 - g2 )2 = ( b2 - 3c )

На основании свойств корней исходного уравнения можно записать - b = X1 + 2X2

g1 + 2g2 = - b

Решая систему из двух уравнений будем иметь g2 = -

X11,12 = g11,12 = [ - b ± ]

X21,22 = g21,22 = [ - b ± ]

Расчет закончен !

Пример 7 Решить уравнение с помощью формул системы mn параметров

x3 - 41x2 + 475x – 1083 = 0

где a =1, b = - 41, c = 475, d = - 1083

1. X11,12 = g11,12 = [ - b ± ] → X11,12 = [ 41 ± ] = [ 41 ± ]

→ X11 = , X1 = 3

X21,22 = g21,22 = [ - b ± ] → g21,22 = [ 41 ± ]= [ 41 ± ]

→ X21 = 19, X22 = X2 = X3 = 19

Расчет закончен !

Вывод основных формул

Задано исходное уравнение x3 + bx2+ cx + d = 0 . Необходимо найти значения корней.

1. Определяем значение D1 = -

2. Разделим

3. Представляем число в виде произведения двух квадратов = [(g1 - g2 )2 - h2 ]2h2.

4. Меньший множитель принимаем за h2 [(g1 - g2 )2 - h2 ]2 =

(g1 - g2 ) = (6)

5. Для получения второго уравнения используем свойство корней исходного уравнения

Из исходного уравнения b = - (X1 + X2 + X3 ) → b = - (g1 + g2 - h + g2 +h )

b = - ( g1 + 2g2 ) (7)

6. Решая систему из двух уравнений (26) и (27) в итоге получим

X1 = g1 = - b )

X11 = g11 = - b ) (8)

X12 = g12 = - b ) (9)

Таким образом получили значение одного из корней исходного уравнения.

7. g2 = -

g21 = -

g22 = -

8. Определяем два остальных корня

X21 = g21 + h

X22 = g22 + h

X31 = g21 – h

X32 = g22 – h

Этими формулами определены по два варианта каждого из трех корней. Среди этих вариантов имеют место и корни исходного кубического уравнения.

Задача решена!

Пример 8 Решить уравнение с помощью формул системы mn параметров

x3 - 33x2 + 311x – 663 = 0

где a =1, b = - 30, c = 322, d = - 1168



Решение

1. Определяем значение D1 = -

-→D1 = - [4(933 – 1089)3+(- 71874 + 92367 – 17901)2]/27 = - [- 15185664 +6718464 ]/27=313600

-→ D1 = [(g1 - g2 )2 - h2 ]2 ∙ 4h2 = 313600 = 4∙42∙72∙102 = 4∙402∙72 = 4∙702∙42 = 4∙282∙102

313600 = 4∙1402∙22 = 4∙72∙402 = 4∙52∙562

-→ = 402∙72 = 702∙42 = 282∙102 = 1402∙22 =52∙562

2. Пусть h12 = 72

X1 = g11 = - b ) = - b) =

g11 = X11 = 13, X12 = 9.

g21 = - = - = 10

X2,3 = g21 + h1 = 10 ± 7 → X2 = 17, X3 = 3

Задача решена!

Неприводимый случай формулы Кардана

Пусть имеем один действительный корень ( обозначим его X1 = g1) и два мнимых сопряженных корня

X2 = ( g2 - ih), X3 = ( g2 + ih).

-→ (2mn)1 = ( X1 - X2 ) = (g1 - g2 ) +ih

(2mn)2 = ( X1 - X3 ) = (g1 - g2 ) – ih

(2mn)3 = ( X2 - X3 ) = g2 - ih - g2ih = - 2ih

Задано исходное уравнение x3 + bx2+ cx + d = 0 . Необходимо найти значения корней.

1. Определяем значение D1 = -

2. Разделим

3. Представляем число в виде произведения двух квадратов = [(g1 - g2 )2 + h2 ]2h2.

4. Меньший множитель принимаем за h2 [(g1 - g2 )2 + h2 ]2 =

(g1 - g2 ) =

5. Для получения второго уравнения используем свойство корней исходного уравнения

Из исходного уравнения b = - (X1 + X2 + X3 ) → b = - (g1 + g2 - ih + g2 + ih )

b = - ( g1 + 2g2 )

6. X1 = g1 = - b )

X11 = g11 = - b )

X12 = g12 = - b )

7. g2 = -

g21 = -

g22 = -

8. Определяем два остальных корня

X21 = g21 + h

X22 = g22 + h

X31 = g21 – h

X32 = g22 – h





Пример 9 Решить уравнение с помощью формул системы mn параметров

x3 - 6x2 + 58x – 200 = 0

где a =1, b = - 6, c = 58, d = - 200

Решение

1. Определяем значение D1 = -

-→D1 = - [4(174 – 36)3+(- 432 + 3132 – 5400)2]/27 = - [ 10512288 + 7290000 ]/27= 659344

-→ D1 = [(g1 - g2 )2 - h2 ]2 ∙ 4h2 = 659344 = 4∙22∙72∙292 = 4∙142∙292 = 4∙72∙582 = 4∙22∙2032

-→ = 2032∙22 = 582∙72 = 292∙142

Пусть h12 = 72

X1 = g11 = - b ) = + 6) = = 4

X1 = 4

g21 = - = - = 1

X2,3 = g21 + ih1 = 1 ± 7i → X2 = 1 - 7i, X3 = 1 + 7i

Задача решена!

Пример 10 Дано уравнение

x3 - 6x2 + 21x – 52 = 0

где a =1, b = - 6, c = 21, d = - 52

Решить уравнение с помощью формул системы mn параметров





Решение

1. Определяем значение D1 = -

-→D1 = - [4(63 – 36)3+(- 432 + 1134 – 1404)2]/27 = - [ 78732 + 492804 ]/27= 21168

→ D1 =[(g1 - g2 )2 - h2 ]2 ∙ 4h2 = 21168 = 4∙22∙72 = 4∙142 = 4∙

→ D1 =

Пусть h12 =

X1 = g11 = - b ) = + 6) = = 4

X1 = 4

g21 = - = - = 1

X2,3 = g21 + ih1 = 1 ± 2iX2 = 1 + 2i , X3 = 1 - 2i

Сравните метод решения и результат с первоисточником.

[И.Н.Бронштейн. К. А.Семендяев .Справочник по математике. М. Наука.1980. Стр. 220 ]

Вывод новых формул

Основные свойства корней квадратного и кубического уравнений выражаются известными формулами Виета. Использование системы mn параметров дает возможность получения новых, ранее неизвестных, формул отражающих свойства корней указанных уравнений.

Рассмотрим кубическое уравнение и проведем анализ формулы (1)

(2mn)2 + ( 3x + b )(2mn) + 3x2 + 2bx +с = 0

Если в это уравнение подставить значение любого из корней исходного кубического уравнения, то получим

(2mn)2 + ( 3xi + b )(2mn) + 3xi2 + 2bxi +с = 0

(2mn)2 + ( 3x1 + b )(2mn) + 3x12 + 2bx1 +с = 0

(2mn)2 + ( 3x2 + b )(2mn) + 3x22 + 2bx2 +с = 0

(2mn)2 + ( 3x3 + b )(2mn) + 3x32 + 2bx3 +с = 0

Таким образом, исходное кубическое уравнение распадается на три квадратных уравнения. При этом для каждого положительного значения (2mn)I обязательно найдется отрицательное значение (2mn)j. Поэтому общая сумма всех корней вида (2mn) будет равна нулю.

( 3x1 + b ) + ( 3x2 + b ) + ( 3x3 + b ) = 0 → 3( x1 + x2 + x3 ) = - 3 b

→ ( x1 + x2 + x3 ) = - b.

Таким образом получили строгое доказательство одного из уравнений Виета.

Рассмотрим любых два уравнения, например,

(2mn)2 + ( 3x1 + b )(2mn) + 3x12 + 2bx1 +с = 0

(2mn)2 + ( 3x2 + b )(2mn) + 3x22 + 2bx2 +с = 0.

Здесь в качестве свободных членов имеем 3x12 + 2bx1 +с и 3x22 + 2bx2 +с. Их сумма равна

→ Σ = 3(x12 + 3x22 ) + 2b(x1 + x2 ) + 2 с. Расчеты показывают, что

3(x12 +x22 ) + 2b( x1 + x2 ) + 2 с = ( x1 - x2 )2

→ (x1 + x2 )2 + b( x1 + x2 ) + с - x1x2 = 0

Тогда для трех корней исходного уравнения будем иметь

(x1 + x2)2 + b( x1 + x2 ) + с - x1x2 = 0

(x1 + x3)2 + b( x1 + x3 ) + с - x1x3 = 0

(x2 + x3)2 + b( x2 + x3 ) + с - x2x3 = 0

Это новые формулы, отражающие свойства корней исходного кубического уравнения!

В общем случае эта формула имеет вид

( xi + xj )2 + b( xi + xj ) + с - xixj = 0 ( 10 )

Пример 11 Проверить формулу ( 10 )

x3 - 20x2+ 113x - 154 = 0

где a =1, b = - 20, c =113, d = -154

Здесь X1 = 7, X2 = 2, X3 = 11.

(x1 + x2)2 + b( x1 + x2 ) + с - x1x2 = 0 → (7 + 2)2 - 20( 7 + 2 ) + 113 - 7∙ 2 = 0

(x1 + x3)2 + b( x1 + x3 ) + с - x1x3 = 0 → (7 + 11)2 - 20( 7 + 11 ) + 113 - 7∙ 11 = 0

(x2 + x3)2 + b( x2 + x3 ) + с - x2x3 = 0 → (2 + 11)2 - 20( 2 + 11 ) + 113 - 2∙ 11 = 0

Расчет подтверждает верность формулы ( 10 ).

Три действительных корня и два одинаковых

При наличии двух одинаковых корней имеет место нулевая разность, т.е. (2mn) = 0.

Тогда из уравнения (2) следует 3x12 + 2bx1 +с = 0. Подставив значения коэффициентов b и с и решив это уравнение получим значение корня- дубля.

Пример 12 Пусть имеем в качестве исходного уравнение x3 – 25x2 + 203x – 539 = 0. Необходимо найти решения данного уравнения.

Решение Допустим, что для данного уравнения имеют место два одинаковых корня. Тогда имеем 3x12 + 2bx1 +с = 0 → 3x12 - 50x1 + 203 = 0 → x1,2 = ) → x1 = , x2 = 7.

Подставив значение x = 7 в исходное уравнение, убеждаемся, что это один из корней- дубля исходного уравнения. Определить третий корень исходного уравнения не представляет особого труда. Таким образом, решением заданного исходного уравнения является

X1 = X2 = 7, X3 = 11

Три действительных и одинаковых корня

В этом случае имеем для всех (2mn) = 0. Из уравнений (46), (47), (48) получим 3x12 + 2bx1 +с = 0.

x1,2 = ). При равенстве трех корней имеем = 0

x1,2,3 = - .

Эту формулу можно получить и более просто. На основании формулы Виета

→ ( x1 + x2 + x3 ) = - b. При x = x1 = x2 = x3 → 3 x = - bx = - .

Пример 12 Дано уравнение

x3 – 24x2 + 183x – 448 = 0 → b= - 24, с = 183, d = - 448

Решить уравнение с помощью формул системы mn параметров

Решение

1. Определяем значение D1 = -

-→D1 = - [4(549 – 576)3+(- 27648 + 39528 – 12096)2]/27 = - [- 78732 + 46656 ]/27= 1188

-→ 1188= 4∙9∙33 = 4∙36∙

2. Пусть h2 =

= [(g1 - g2 )2 - h2 ]2h2[(g1 - g2 )2 + h2 ]2 = 36 [(g1 - g2 )2 - h2 ] = ± 6

(g1 - g2 )2 = - 6 + = g1 - g2 = ± .

Характеристики

Тип файла
Документ
Размер
2,63 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6458
Авторов
на СтудИзбе
304
Средний доход
с одного платного файла
Обучение Подробнее