86284 (575044), страница 2

Файл №575044 86284 (Построение порождающего полинома циклического кода по его корням (степеням корней)) 2 страница86284 (575044) страница 22016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Умножим на по модулю полинома : , разделим х на , остаток от деления равен х. Не будем рассматривать формирование элементов соответствующих 1-3 степеням, рассмотрим формирование элементов для степеней 4 и 5:

Рассмотрим вычисление элемента

Рассмотрим вычисление элемента

И так далее, пока не будет получено 24= 16 элементов. Ниже представлено представление поля GF(24), полученного способом, изложенным выше.

Таблица 1. Представление поля GF(24).

1.4.4 О корнях полиномов и минимальных полиномах

Минимальным полиномом или функцией минимума элемента поля GF(pm) называется полином mi(x) наименьшей степени с коэффициентами из GF(p), для которого является корнем, иначе говоря, mi ( )=0.

Рассмотрим теорему, которая является ключевой для построения порождающего полинома кода по последовательности корней, ее доказательство можно найти в книгах [1] и [2].

Теорема. 1. Предположим, что fi(x) над GF(p) является минимальным полиномом элемента из GF(pm). Тогда f(x) является также минимальным полиномом элемента .

Определение. Два элемента из GF(pm) называются сопряженными, если они являются корнями одного и того же минимального полинома над GF(p) (это означает, что коэффициенты полинома лежат в GF(p)).

Следствие 1 теоремы 1:

Можно сделать вывод, что у элемента может быть не один сопряженный элемент, таких элементов может быть m или меньше. Используя теорему 1 можно составить последовательность сопряженных элементов, такую последовательность в литературе еще называют циклотомическим классом. Множество элементов, входящие в циклотомический класс (сопряженные элементы) можно найти по следующей формуле:

(1)

Где, С – циклотомический класс, s – степень элемента для которого находятся сопряженные элементы, p – показатель основного поля, m – число элементов расширения поля.

Рассмотрим пример нахождения циклотомического класса для элемента из GF(24). Здесь и далее будем представлять элемент, как его степень.

Итак, s = 1, p = 2, m = 4.

Таким образом, для элемента будут сопряженными элементы

Следует иметь ввиду, что при построении циклотомического класса, степень элемента может быть выше максимальной степени, полученной при построении расширения поля, в этом случае необходимо разделить этот элемент на полином, по которому было построено расширение поля и взять остаток от деления (так как группа является циклической, см. выше). Также нужно иметь ввиду, что при построении циклотомического класса, некоторые элементы могут оказаться одинаковыми, тогда такой элемент присутствует в классе в одном экземпляре.

Следствие 2 из теоремы 1:

Два сопряженных между собой элемента будут иметь один и тот же минимальный полином.

Теорема 2. Минимальный полином элемента равен

,

где сопряженные элементы

Следствие из теоремы 2: Все элементы GF(pm) являются корнями полиномов.

Построим минимальный полином для элемента из GF(24). Сопряженные элементы для найдены выше.

Используя теорему 2, запишем минимальный полином в общем виде:

Теперь нужно раскрыть скобки, по обычным правилам, не приводя подобные, помня что, операция вычитания определена по правилам для поля GF(2), и она эквивалента операции сложения.

Если один из элементов имеет степень выше, чем максимальная степень элементов в таблице 1 (циклической группе), обозначим такой элемент как , то необходимо разделить на полином, по которому было построено расширение, и взять остаток от деления, остаток будет являться искомым элементом. Это обеспечивается тем, что мультипликативная группа примитивного элемента образует циклическую группу (см. выше).

Теперь, нужно заменить элементы разложения на элементы из GF(pm), с учетом вышесказанного, раскрыть скобки, привести подобные, не забывая, что операция сложения проводится по модулю p (в данном примере по модулю два, так как в качестве основного поля выбрано GF(2)).

Резюме: Для нахождения минимального полинома для элемента из GF(pm) необходимо:

  1. Построить расширение поля по модулю некоторого неприводимого над GF(p) полинома.

  2. Построить циклотомический класс для элемента , учитывая то, что одинаковые элементы в классе учитываются только один раз и то, что степень элемента класса может превышать максимальную степень элементов расширения поля.

  3. При помощи теоремы 2 записать разложение минимального полинома, используя в качестве корней элементы циклотомического класса.

  4. Раскрыть скобки разложения, не приводя подобные.

  5. Проверить, не превышает ли степень максимальную степень элементов GF(pm) (см. выше).

  6. Заменить элементы на элементы поля.

  7. Раскрыть скобки, привести подобные, учитывая тот факт, что суммирование ведется по модулю p.

Рассмотрим подробнее следствие 2 из теоремы 1:

Циклотомический класс для элемента : {1, 2, 4 ,8} для этих четырех элементов будут одинаковые минимальные полиномы.

Рассмотрим более подробно пример нахождения минимальных полиномов для GF(24).

Построение GF(24) рассмотрено выше, будем пользоваться готовым результатом.

Таблица 2. Представление GF(24).

Начнем с элемента . Исходя из формулы 1, запишем множество сопряженных элементов:

Так как все элементы получились одинаковыми, то циклотомический класс будет состоять из одного элемента – {0}.

При помощи теоремы 2 запишем: m0(a0) = (x - a0 ), заменим a0 на элемент поля.

Минимальная функция для элемента a0: m0(a0) = (x + 1)

Элемент .

Используя формулу 1, получим циклотомический класс. {1, 2, 4, 8}.

Используя теорему 2, запишем разложение минимального полинома.

Теперь заменим a на элементы поля, после раскрытия скобок и приведения подобных получим минимальный полином для элементов со степенями 1, 2, 4, 8.

Элемент .

Исходя из теоремы 1 и следствия из нее, для элемента минимальный полином будет равен полиному для элемента .

Элемент .

Используя формулу 1, запишем циклотомический класс: C = {3,6,12,24}, как видно элемент со степенью 24 отсутствует в представлении поля GF(24). Если разделить на полином, по модулю которого производилось построение GF(24), то получим остаток .

Используя теорему 2, запишем разложение минимального полинома:

m3(x) = (x – a3 ) (x – a6 ) (x – a9 ) (x – a12 ).

Теперь, раскрыв скобки и приведя подобные, получим полином m3(x) = x4 + x3+ x2 + x1+1.

Следовательно, это полином для элементов со степенями 3,6,12,9.

Элемент .

Минимальный полином этого элемента равен полиному элемента

Элемент .

Используя формулу 1, запишем циклотомический класс: C = {5,10,5,10}. Так как элементы класса совпали, то в классе останется два элемента C = {5,10}.

Используя теорему 2, запишем разложение минимального полинома:

m5(x) = (x – a5 ) (x – a10 ) = x2 + x+1

Элемент .

Минимальный полином этого элемента равен полиному элемента

Элемент .

Используя формулу 1, запишем циклотомический класс: C = {7,14,28,56}. Так как , то C = {7,14,11,13}

Используя теорему 2, запишем разложение минимального полинома:

m7(x) = (x – a7 ) (x – a14 ) (x – a11 ) (x – a13 ) = x4 + x3+1

Нетрудно убедиться, что для остальных элементов минимальные полиномы уже найдены выше.

2. О циклических кодах и корнях порождающего полинома с точки зрения конечных полей

Следует отметить, что в данном разделе будет рассмотрено описание циклических кодов с точки зрения конечных полей только в рамках нахождения порождающего полинома. Наиболее понятное полное рассмотрение циклических кодов с точки зрения конечных полей можно найти в книге [2].

Теорема 3. Циклический код длины n с порождающим полиномом g(x) существует тогда и только тогда, когда g(x) делит .

Следствие из теоремы 3. Порождающий полином циклического кода длины n можно найти, разложив полином на простые множители:

где s – число простых множителей. Произведение произвольного подмножества этих множителей дает порождающей многочлен g(x). Если g(x) – порождающий полином, то он делит , и, следовательно, . Полином g(x) можно найти, найдя все его простые делители.

Простые делители есть не что иное, как функции минимума или минимальные полиномы. Таким образом, зная корни минимальных полиномов, можно легко найти порождающий полином кода. Исходя из сказанного в предыдущих разделах, можно сделать вывод, что поле как раз содержит корни минимальных полиномов, а следовательно содержит корни порождающего полинома.

Резюме:

  1. Порождающий полином не что иное, как произведение его простых делителей .

  2. Пусть - корень полинома . Тогда не что иное, как функция минимума для .

  3. Имея корни полиномов – делителей g(x) можно найти их функции минимума, и следовательно найти g(x) .

  4. содержит корни g(x).

Таким образом, нахождение порождающего полинома по степеням его корней сводится к нахождению минимальных полиномов для элементов поля с соответствующей степенью.

,

где минимальный полином.

2.1 Нахождение порождающего полинома по последовательности степеней корней

В таблице из приложения Г книги [1] содержатся параметры циклических кодов и последовательности степеней корней. Мы рассматриваем только коды тривиальной длины. Часть этой таблицы указана в приложении А данной работы. В таблице из приложения В книги [1] указаны неприводимые полиномы над GF(2). Укороченное представление такой таблицы также есть в приложении Б данной работы.

Алгоритм нахождения порождающего полинома:

  1. Исходя из длины выбранного кода, построить расширение поля по модулю неприводимого полинома над степень которого равна m. Где m находится из следующего соотношения: .

  2. Для каждого корня построить циклотомический класс.

  3. Для каждого корня найти минимальный полином.

  4. Перемножить полученные минимальные полиномы по правилам для .

Рассмотрим каждый шаг более подробно на примере кода (15,5,7) . Для такого кода в таблице циклических кодов указаны следующие степени корней {1,3,5}.

Характеристики

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6510
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее