85951 (574953), страница 2
Текст из файла (страница 2)
=((x1x2+x1x2x4+x1x2x3+x1x2x3x4)( x1+x4)+( x1x2+x1x3+
+ x1x4+ x1x2x3+x1x2x4)) ~y10=(x1x2+x1x2x4+x1x2x3x4+
+ x1x2+x1x3+ x1x4+ x1x2x3+x1x2x4)~y10=(x1x2+x1x2+x1x3+
+x1x4+x1x2x3+x1x2x4) ~y10=(x2+x1x3+x1x4+x1x2x3+x1x2x4) ~y10=
=(x2+x1x3+x1x4)~y10=x2(x1+x3)( x1+x4)(x1+x4)(x2+x4)(x3+x4)+
+(x2+x1x3+x1x4)( x1x4+x2x4+x3x4)=x2(x1+x3)( x1x4+x1x4)
(x2+x4)(x3+x4) +(x2+x1x3+x1x4)( x1x4+x2x4+x3x4)=
=x2(x1+x3)( x1x2x4+x1x2x4+x1x4)(x3+x4) +(x2+x1x3+x1x4)
( x1x4+x2x4+x3x4)=x2(x1+x3)( x1x2x3x4+x1x2x3x4+x1x2x4+
+x1x2x4) +(x2+x1x3+x1x4)( x1x4+x2x4+x3x4)=( x1+x3)( x1x2x4+
+x1x2x3x4+x1x2x3x4) +(x2+x1x3+x1x4)( x1x4+x2x4+x3x4)=
=(x1+x3) (x1x2x4+x1x2x3x4) +(x2+x1x3+x1x4)( x1x4+x2x4+x3x4)=
=x1x2x4+x1x2x3x4+x1x2x3x4+x1x2x4+x2x4+x2x3x4+x1x2x3x4+
+x1x3x4=x1x2x3+x1x2x3x4+x2x4+x1x3x4
y12=x1/y9 =x1+x4(x1+x2)= x1+x1x4+x2x4=x1+x2x4
y13= y9→y10=(x4+x1x2)(x1+x4)(x2+x4)(x3+x4)=(x1x4+x4+x1x2+
+x1x2x4)(x2+x4)(x3+x4)=( x4+x1x2)(x2+x4)(x3+x4)=(x2x4+x4+
+x1x2+x1x2x4)(x3+x4)=( x4+x1x2)(x3+x4)=x3x4+x4+x1x2x3+
+x1x2x4=x4+x1x2x3
y14=y9~y11 =x4(x1+x2)(x1+x2+x4)( x1+x2+x3+x4)(x2+x4)
(x1+x3+x4)+( x4+x1x2)( x1x2x4+x1x2x3x4+x2x4+x1x3x4)=
=x4(x1x2+x1x4+x1x2+x2)( x1+x2+x3+x4)(x2+x4)( x1+x3+x4)+
+( x4+x1x2)( x1x2x4+x1x2x3x4+x2x4+x1x3x4)=x4(x2+x1x4)( x1+x2+
+x3+x4)( x1x2+x2x3+x2x4+x1x4+x3x4+x4) +( x4+x1x2)( x1x2x4+
+ x1x2x3x4+x2x4+x1x3x4)= x2x4(x1+x2+x3+x4)( x1x2+x2x3+x4)+
+( x4+x1x2)( x1x2x4+x1x2x3x4+x2x4+x1x3x4)=( x1x2x4+x2x4+
+x2x3x4)( x1x2+x2x3+x4)+ ( x4+x1x2) (x1x2x4+x1x2x3x4+x2x4+
+x1x3x4)= x2x4(x1x2+x2x3+x4) +( x4+x1x2)( x1x2x4 +x1x2x3x4+x2x4+
x1x3x4)=( x4+x1x2)( x1x2x4+x1x2x3x4+x2x4+x1x3x4)=x1x2x3x4+
+x1x2x3x4=x1x2x4
y15=y10/y12/y14=((x1+x4)(x2+x4)(x3+x4)+x1(x2+x4))/y14=
=((x1x2+x1x4+x2x4+x4)+x1x2+x1x4)/y14=((x1x2x3+x1x2x4+x3x4+x4)+
+x1x2+x1x4)/y14=(x1x2+x4)/y14=(x1+x2)x4+(x1+x2+x4)=
=x1x4+x2x4+x1+x2+x4=x1+x2+x4
y16=y10→y13=(x1x4+x2x4+x3x4)x4(x1+x2+x3)= x1x4+x1x2x4+
+x1x3x4+x2x4+x1x2x4+x1x3x4+x3x4+x1x3x4+x2x3x4=
=x1x4+x2x4+x3x4
y17=y11~y14=(x1+x2+x4)( x1+x2+x3+x4)(x2+x4)( x1+x3+x4)
(x1+x2+x4)+( x1x2x4+x1x2x3x4+x2x4+x1x3x4)x1x2x4=
=(x1x2+x1x3+x1x4+x1x2+x2+x2x3+x2x4+x1x4+x2x4+x3x4)
(x1x2+x2x3+x2x4+x1x4+x3x4+x4)+x1x2x3x4+x1x2x3x4=
=x2x4+x1x3x4+x1x2x3x4+x1x4+x1x2x4+x1x2x3x4+x1x2x3x4+
+x1x2x3x4+x1x2x3x4=x2x4+x1x4+x1x2x4+x1x2x3x4+x1x2x3x4+
+x2x4=x2x4+x1x4+x2x4
y18=y15/y17=x1x2x4+(x2+x4)( x1+x4)( x2+x4)=x1x2x4+(x1x2+x2x4+
+x1x4+x4)( x2+x4)=x1x2x4+(x1x2+x4)( x2+x4)=x1x2x4+x1x2x4+
+x2x4=x1x2x4+x1x4+x2x4
y19=y16→y18 =(x1x4+x2x4+x3x4)( x1+x2+x4)(x1+x2+x4)(x2+x4)=
=(x1x4+x2x4+x3x4)( x1+x2+x4)(x1x2+x1x4+x2x4+x2x4)=
=(x1x4+x2x4+x3x4)( x1x2x4+x1x2x4+x1x2x4+x2x4+x1x2x4+
+x1x4+x2x4)= (x1x4+x2x4+x3x4)( x1x2x4+x2x4+x1x4)=
=x1x2x4+x1x2x3x4=x1x2x4
y20=y18=x1x2x4+x1x4+x2x4
Теперь выполним построение сводной таблицы. В левой части таблицы приводятся все возможные наборы из четырех аргументов – от нулевого до пятнадцатого, а в правой – значения функции для каждого элемента логической схемы.
x1 | x2 | x3 | x4 | y5 | y6 | y7 | y8 | y9 | y10 | y11 | y12 | y13 | y14 | y15 | y16 | y17 | y18 | y19 | y20 |
0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 |
0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 |
1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
Формула x1x2x4+x1x4+x2x4 , полученная для всей таблицы, записана в виде ДНФ. Для перевода ее в СДНФ, введем единицы для недостающих элементов в каждый минитерм: